The Eleventh and Twelveth Problems of Rota’s Fubini Lectures: from Cumulants to Free Probability Theory

Invited Chapter
  • Elvira Di Nardo
  • Domenico Senato


The title of the paper refers to the Fubini Lecture “Twelve problems in probability no one likes to bring up”, delivered by Gian-Carlo Rota at the Institute for Scientific Interchange (Turin - Italy) in 1998. The eleventh and the twelfth problems of that lecture deal with cumulants and free probability theory respectively. Our aim is to describe the development of the classical umbral calculus, as featured by Rota and Taylor in 1994, thanks to which a unifying theory of classical, Boolean and free cumulants has been carried out. This unifying theory relies on an updating of Sheffer sequences via the classical umbral calculus. Some in-between steps lead us to develop some topics of computational statistics, which benefit of this symbolic approach in efficiency and speed-up. We resume also these applications.


Moment Generate Function Factorial Moment Poisson Random Variable Polynomial Sequence Noncrossing Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, D. F. (2001), Asymptotic Expansions of Moments and Cumulants, in “Stat. Comput.”, 11, pp. 7–16.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Andrews, D. F., Stafford, J. E. (1998), Iterated Full Partitions, in “Stat. Comput.”, 8, pp. 189–92.CrossRefGoogle Scholar
  3. 3.
    Andrews, D. F., Stafford, J. E. (2000), Symbolic Computation for Statistical Inference, Oxford, Oxford University Press.MATHGoogle Scholar
  4. 4.
    Baten, W. D. (1931), Correction for the Moments of a Frequency Distribution in Two Variables, in “Ann. Math. Stat.”, 2/3, pp. 309–19.CrossRefGoogle Scholar
  5. 5.
    Bruns, H. (1906), Wahrscheinlichkeitsrechnung und Kollektivmasslehre, Leipzig, Teubner.Google Scholar
  6. 6.
    Costantine, G. M., Savits, T. (1994), A Stochastic Representation of Partition Identities, in “SIAM J. Discrete Math.”, 7, pp. 194–202.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Craig, C. C. (1936), Sheppard’s Corrections for a Discrete Variable, in “Ann. Math. Stat.”, 7/2, pp. 55–61.CrossRefGoogle Scholar
  8. 8.
    Crapo, H., Senato, D. (eds.) (2001), Algebraic Combinatorics and Computer Science: a Tribute to Gian-Carlo Rota, Milan, Springer Italia.MATHGoogle Scholar
  9. 9.
    Crapo, H. (2001), Ten Abandoned Golden Mines, in H. Crapo, D. Senato (eds.), Algebraic Combinatorics and Computer Science, A Tribute to Gian-Carlo Rota, Milan, Springer Italia, pp. 3–22.Google Scholar
  10. 10.
    D’Antona, O. (1994), The Would-Be Method of Targeted Rings, in B. E. Sagan, R. P. Stanley (eds.), Mathematical Essays in Honor of Gian-Carlo Rota, Boston, Basel, Berlin, Birkhäuser, pp. 157–72.Google Scholar
  11. 11.
    Di Bucchianico, A., Soto y Koelemeijer, G. (2001), Solving Linear Recurrences Using Functionals, in H. Crapo, D. Senato (eds.), Algebraic Combinatorics and Computer Science, A Tribute to Gian-Carlo Rota, Milan, Springer Italia, pp. 461–72.Google Scholar
  12. 12.
    Di Nardo, E. (2009), A New Approach to Sheppards Corrections, preprint.Google Scholar
  13. 13.
    Di Nardo, E., Senato, D. (2001), Umbral Nature of the Poisson Random Variables, in H. Crapo, D. Senato (eds.), Algebraic Combinatorics and Computer Science, A Tribute to Gian-Carlo Rota, Milan, Springer Italia, pp. 245–66.Google Scholar
  14. 14.
    Di Nardo, E., Senato, D. (2006), An Umbral Setting for Cumulants and Factorial Moments, in “European J. Combin.”, 27/3, pp. 394–413.Google Scholar
  15. 15.
    Di Nardo, E., Guarino, G., Senato, D. (2008), A Unifying Framework for k-statistics, Polykays and their Multivariate Generalizations, in “Bernoulli”, 14/2, pp. 440–68.CrossRefGoogle Scholar
  16. 16.
    Di Nardo, E., Guarino, G., Senato, D. (2008), Maple Algorithms for Polykays and Multivariate Polykays, in “Adv. Appl. Stat.”, 8/1, pp. 19–36.Google Scholar
  17. 17.
    Di Nardo, E., Guarino, G., Senato, D. (2008), Symbolic Computation of Moments of Sampling Distributions, in “Comp. Stat. Data Anal.”, 52/11, pp. 4909–22.Google Scholar
  18. 18.
    Di Nardo, E., Guarino, G., Senato, D. (2009), A New Method for Fast Computing Unbiased Estimators of Cumulants, in “Statist. Comput.”, 19, pp. 155–65.CrossRefGoogle Scholar
  19. 19.
    Di Nardo, E., Niederhausen, H., Senato, D. (2008), The Classical Umbral Calculus II: Sheffer Sequences, arXiv:0810. 3554v1.Google Scholar
  20. 20.
    Di Nardo, E., Oliva, I. (2009), On the Computation of Classical, Boolean and Free Cumulants, in “Appl. Math. Comp.”, 208/2, pp. 347–54.Google Scholar
  21. 21.
    Di Nardo E., Petrullo, P., Senato, D. (2009), Cumulants, Convolutions and Volume Polynomials, submitted.Google Scholar
  22. 22.
    Doubilet, P. (1972), On the Foundations of Combinatorial Theory VII: Symmetric Functions Through the Theory of Distribution and Occupancy, in “Stud. Appl. Math.”, 11, pp. 377–96.MathSciNetGoogle Scholar
  23. 23.
    Dressel, P. L. (1940), Statistical Seminvariants and their Estimates with Particular Emphasis on their Relation to Algebraic Invariants, in “Ann. Math. Stat.”, 11, pp. 33–57.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Drton, M., Sturmfels, B., Sullivant, S. (2008), Lectures on Algebraic Statistics. Oberwolfach Seminars, Boston, Basel, Berlin, Birkhäuser.Google Scholar
  25. 25.
    Feller, W. (1966), An Introduction to Probability Theory and its Applications, vol. 2, New York, London, Sydney, John Wiley & Sons.MATHGoogle Scholar
  26. 26.
    Ferreira, P. G., Magueijo, J., Silk, J. (1997), Cumulants as non-Gaussian Qualifiers, in “Phys. Rev. D”, 56, pp. 4592–603.CrossRefGoogle Scholar
  27. 27.
    Fisher, R. A. (1922), On the Mathematical Foundations of Theoretical Statistics, in “Phil. Trans. R. Soc. Lond. A”, 222, pp. 309–68.CrossRefGoogle Scholar
  28. 28.
    Fisher, R. A. (1929), Moments and Product Moments of Sampling Distributions, in “Proc. London Math. Soc. (2)”, 30, pp. 199–238.CrossRefGoogle Scholar
  29. 29.
    Fréchet, M. (1940-1943), Les probabilités associées à un système d’événements, compatibles et dépendants, Paris, Herman.MATHGoogle Scholar
  30. 30.
    Gessel, I. M. (2003), Applications of the Classical Umbral Calculus, “Algebra Universalis”, 49/4, pp. 397–434.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Hald, A. (2001), On the History of the Correction for Grouping 1873-1922, in “Scand. J. Statist.” 28/3, pp. 417–28.CrossRefMathSciNetGoogle Scholar
  32. 32.
    Kaplan, E. L. (1952), Tensor Notation and the Sampling Cumulants of k-statistics, in “Biometrika”, 39, pp. 319–23.MATHMathSciNetGoogle Scholar
  33. 33.
    Kreweras, G. (1972), Sur les partitions non croisée d’un cycle, in “Discrete Math.”, 1, pp. 333–50.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Langdon, W. L., Ore, O. (1929), Semi-invariants and Sheppard’s Correction, in “Ann. of Math.” 31/2, pp. 230–2.MathSciNetGoogle Scholar
  35. 35.
    Lukacs, E. (1955), Applications of Faà di Bruno’s Formula in Mathematical Statistics, in “Am. Math. Mon.”, 62, pp. 340–8.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    McCullagh, P. (1984), Tensor Notation and Cumulants of Polynomials, “Biometrika”, 71, pp. 461–76.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    McCullagh, P. (1987), Tensor Methods in Statistics. Monographs on Statistics and Applied Probability, London, Chapman and Hall.Google Scholar
  38. 38.
    Müller, J. D. (2004), Cumulant Analysis in Fluorescence Fluctuation Spectroscopy, in “Biophys J.”, 86, pp. 3981–92.CrossRefGoogle Scholar
  39. 39.
    Niederhausen, H. (1980), Sheffer Polynomials and Linear Recurrences, in “Congressus Numerantium”, 29, pp. 689–98.MathSciNetGoogle Scholar
  40. 40.
    Niederhausen, H. (1985), A Formula for Explicit Solutions of Certain Linear Recursions on Polynomial Sequences, in “Congressus Numerantium”, 49, pp. 87–98.MathSciNetGoogle Scholar
  41. 41.
    Niederhausen, H. (1999), Recursive Initial Value Problems for Sheffer Sequences, in “Discrete Math.”, 204, pp. 319–27.MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Petrullo, P., Senato, D. (2009), An Instance of Umbral Methods in Representation Theory: the Parking Function Module, in “Pure Math. Appl.”, in press.Google Scholar
  43. 43.
    Pistone, G., Riccomagno, E., Wynn, H. P. (2001), Algebraic Statistics: Computational Commutative Algebra in Statistics, London, Chapman and Hall.MATHGoogle Scholar
  44. 44.
    Pitman, J. (1997), Some Probabilistic Aspects of Set Partitions, in “Amer. Math. Montly”, 104, pp. 201–9.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Pitman, J., Stanley, R. P. (2002), A Polytope Related to Empirical Distributions, Plane Trees, Parking Functions and the Associahedron, in “Discrete Comput. Geom.”, 27, pp. 603–34.MATHMathSciNetGoogle Scholar
  46. 46.
    Prasad, S., Menicucci, N. C. (2004), Fisher Information with Respect to Cumulants, in “IEEE Transactions on Information Theory”, 50, pp. 638–42.CrossRefMathSciNetGoogle Scholar
  47. 47.
    Rao Jammalamadaka, S., Subba Rao, T., Terdik, G. (2006), Higher Order Cumulants of Random Vectors and Applications to Statistical Inference and Time Series, in “Sankhya”, 68, pp. 326–56.MathSciNetGoogle Scholar
  48. 48.
    Razpet, M. (1990), An Application of the Umbral Calculus, in “J. Math. Anal. Appl.”, 149, pp. 1–16.MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Riordan, J. (1958), An Introduction to Combinatorial Analysis, New York, John Wiley & Sons.MATHGoogle Scholar
  50. 50.
    Robson, D. S. (1957), Applications of Multivariate Polykays to the Theory of Unbiased Ratio-type Estimation, in “J. Amer. Statist. Assoc.”, 52, pp. 511–22.MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Roman, S. M., Rota, G.-C. (1978), The Umbral Calculus, in “Adv. Math.”, 27, pp. 95–188.MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Rose, C., Smith, M. D. (2002), Mathematical Statistics with Mathematica, (Springer Text in Statistics), New York, Berlin, Springer.MATHGoogle Scholar
  53. 53.
    Rota, G.-C. (2001), Twelve Problems in Probability No One Likes to Bring Up, in H. Crapo, D. Senato (eds.), Algebraic Combinatorics and Computer Science, A Tribute to Gian-Carlo Rota, Milan, Springer Italia.Google Scholar
  54. 54.
    Rota, G.-C., Kahaner D., Odlyzko, A. (1973), On the Foundations of Combinatorial Theory. VIII. Finite Operator Calculus, in “Jour. Math. Anal. Appl.”, 42, pp. 684–760.MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Rota, G.-C., Taylor, B. D. (1994), The Classical Umbral Calculus, in “SIAM J. Math. Anal.”, 25, pp. 694–711.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Rota, G.-C., Shen, J. (2000), On the Combinatorics of Cumulants, in “Jour. Comb. Theory Series A”, 91, pp. 283–304.MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Rota, G.-C., Shen, J., Taylor, B. D. (1998), All Polynomials of Binomial Type are Represented by Abel Polynomials, in “Ann. Scuola Norm. Sup. Pisa Cl. Sci.”, 25/1, pp. 731–8.MathSciNetGoogle Scholar
  58. 58.
    Saliani, S., Senato, D. (2006), Compactly Supported Wavelets Through the Classical Umbral Calculus, in “Journal of Fourier Analysis and Applications”, 12/1, pp. 27–36.CrossRefMathSciNetGoogle Scholar
  59. 59.
    Shen, J. (1999), Combinatorics for Wavelets: the Umbral Refinement Equation, in “Stud. Appl. Math.”, 103/2, pp. 121–47.CrossRefGoogle Scholar
  60. 60.
    Sheppard, W. F. (1898), On the Calculation of Most Probable Values of Frequency-Constants for Data Arranged According to Equisdistant Division of a Scale, in “Proc. Lond. Math. Soc.”, 29, pp. 353–80.CrossRefGoogle Scholar
  61. 61.
    Smith, P. J. (1995), A Recursive Formulation of the Old Problem of Obtaining Moments from Cumulants and Vice-versa, “Amer. Statist.”, 49, pp. 217–8.CrossRefMathSciNetGoogle Scholar
  62. 62.
    Speed, T. P. (1983), Cumulants and Partition Lattices, in “Austral. J. Stat.”, 25, pp. 378–88.MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Speed, T. P. (1986), Cumulants and Partition Lattices. II: Generalised k-statistics, in “J. Aust. Math. Soc. Ser. A”, 40, pp. 34–53.MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Speed, T. P. (1986), Cumulants and Partition Lattices. III: Multiply-indexed Arrays, in “J. Aust. Math. Soc. Ser. A”, 40, pp. 161–82.MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Speed, T. P. (1986), Cumulants and Partition Lattices. IV: a. s. Convergence of Generalised k-statistics, in “J. Aust. Math. Soc. Ser. A”, 41, pp. 79–94.MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Speed, T. P., Silcock, H. L. (1988), Cumulants and Partition Lattices. V: Calculating Generalized k-statistics, in “J. Aust. Math. Soc. Ser. A”, 44, pp. 171–96.MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Speed, T. P., Silcock, H. L. (1988), Cumulants and Partition Lattices. VI: Variances and Covariances of Mean Squares, in “J. Aust. Math. Soc. Ser. A”, 44, pp. 362–88.MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Speicher, R. (1994), Multiplicative Functions on the Lattice of Non-Crossing Partitions and Free Convolution, in “Math. Ann.”, 298, pp. 611–28.MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Speicher, R. (1997), Free Probability Theory and Non-Crossing Partitions, in “Sém. Loth. Combin.”, B39c.Google Scholar
  70. 70.
    Speicher, R., Woroudi, R. (1997), Boolean Convolution, in D. Voiculescu (ed.), “Fields Inst. Commun.”, 12, AMS, pp. 267–79.Google Scholar
  71. 71.
    Stam, A. J. (1988), Polynomials of Binomial Type and Compound Poisson Processes, in “Jour. Math. Anal. Appl.”, 130, pp. 493–508.MATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Stanley, R. (2001), Enumerative Combinatorics II, Cambridge, Cambridge Univerity Press.Google Scholar
  73. 73.
    Steffensen, J. F. (1950), Interpolation, New York, Chelsea (reprinted from 1927).MATHGoogle Scholar
  74. 74.
    Stembridge, J. R. (1995), A Maple Package for Symmetric Functions, in “J. Symbolic Computation”, 20, pp. 755–68.MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Stuart, A., Ord, J. K. (1987), Kendall’s Advanced Theory of Statistics, 1, London, Charles Griffin and Co.MATHGoogle Scholar
  76. 76.
    Taylor, B. D. (1998), Difference Equations Via the Classical Umbral Calculus, in B. E. Sagan, R. P. Stanley (eds.), Mathematical Essays in Honor of Gian-Carlo Rota, Boston, Basel, Berlin, Birkhäuser, pp. 397–411.Google Scholar
  77. 77.
    Taylor, B. D. (2001), Umbral Presentations for Polynomial Sequences, in “Comput. Math. Appl.”, 41, pp. 1085–98.MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Thiele, T. N. (1897), Elementaer Iagttagelses Laere, København, Gyldendalske. Reprinted in English (1931), The Theory of Observations, in “Ann. Math. Stat.”, 2, pp. 165–308.Google Scholar
  79. 79.
    Touchard, J. (1956), Nombres exponentiels et nombres de Bernoulli, in “Canad. J. Math.”, 8, pp. 305–20.MATHMathSciNetGoogle Scholar
  80. 80.
    Tukey, J. W. (1950), Some Sampling Simplified, in “J. Amer. Statist. Assoc.”, 45, pp. 501–19.MATHCrossRefMathSciNetGoogle Scholar
  81. 81.
    Tukey, J. W. (1956), Keeping Moment-like Sampling Computations Simple, “Ann. Math. Stat.”, 27, pp. 37–54.MATHCrossRefMathSciNetGoogle Scholar
  82. 82.
    Vrbik, J. (2005), Populations Moments of Sampling Distributions, in “Comput. Stat.”, 20, pp. 611–21.CrossRefMathSciNetGoogle Scholar
  83. 83.
    Voiculescu, D. (2000), Lecture Notes on Free Probability, in “Lecture Notes in Math.”, 1738, pp. 281–349.Google Scholar
  84. 84.
    Wilson, E. B. (1927), On the Proof of Sheppard’s Corrections, in “Proc. Natl. Acad. Sci. USA”, 13/3, pp. 151–6.CrossRefGoogle Scholar
  85. 85.
    Wishart, J. (1952), Moment Coefficients of the k-statistics in Samples from a Finite Population, in “Biometrika”, 39, pp. 1–13.MATHMathSciNetGoogle Scholar
  86. 86.
    Zeilberger, D. (2004), Symbolic Moment Calculus I: Foundations and Permutation Pattern Statistics, in “Ann. Comb.”, 8, pp. 369–78.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Università degli Studi della BasilicataBasilicataItaly

Personalised recommendations