A Glimpse of Vector Invariant Theory. The Points of View of Weyl, Rota, De Concini and Procesi, and Grosshans

Invited Chapter
  • Andrea Brini


We will try to provide a brief and elementary description of some of the founding ideas of the characteristic-zero theory as well as of the characteristic-free theory of vector invariants for the classical groups GL(d), SL(d), S p 2m , O(d).


Invariant Theory Fundamental Theorem Vector Variable Young Tableau Polarization Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brini, A., Palareti, A., Teolis, A. (1988), Gordan—Capelli Series in Superalgebras, in “Proc. Natl. Acad. Sci. USA”, 85, pp. 1330–3.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brini, A., and Teolis, A. (1989), Young—Capelli Symmetrizers in Superalgebras, in “Proc. Natl. Acad. Sci. USA”, 86, pp. 775–8.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brini, A., Huang, R.Q., Teolis, A. (1992), The Umbral Symbolic Method for Supersymmetric Tensors, in “Adv. Math.”, 96, pp. 123–93.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brini, A., Regonati, F., Teolis, A. (2005), Combinatorics and Representations of General Linear Lie Superalgebras over Letterplace Superalgebras, in Computer Algebra and Clifford Algebra with Applications, H. Li, P. Olver, G. Sommer (eds.), (Lecture Notes in Computer Sciences, 3519), Berlin, Springer, pp. 239–57.Google Scholar
  5. 5.
    Capelli, A. (1902), Lezioni sulla teoria delle forme algebriche, Neaples, Pellerano.Google Scholar
  6. 6.
    De Concini, C., Procesi, C. (1976), A Characteristic Free Approach to Invariant Theory, in “Adv. Math.”, 21, pp. 330–54.MATHCrossRefGoogle Scholar
  7. 7.
    De Concini, C., Eisembud, D., Procesi, C. (1980), Young Diagrams and Determinantal Varieties, in “Invent. Math.”, 56, pp. 129–65.CrossRefMathSciNetGoogle Scholar
  8. 8.
    De Concini, C., Eisembud, D., Procesi, C. (1982), Hodge Algebras, in “Astérisque”, 91.Google Scholar
  9. 9.
    Deruyts, J. (1892), Essai d’une théorie générale des formes algébriques, in “Mémoires. Société Royale des Sciences de Liège”, 17, pp. 1–156.Google Scholar
  10. 10.
    Désarménien, J., Kung, J. P. S., Rota, G.-C. (1978), Invariant Theory, Young Bitableaux and Combinatorics, in “Adv. Math.”, 27, pp. 63–92.MATHCrossRefGoogle Scholar
  11. 11.
    Dieudonné, J. A., Carrell, J. B. (1971), Invariant Theory, Old and New, New York, Academic Press.MATHGoogle Scholar
  12. 12.
    Domokos, M. (2003), Matrix Invariants and the Failure of Weyl’s Theorem. in Polynomial Identities and Combinatorial Methods, in “Lect. Notes Pure Appl. Math.”, 235, pp. 215–36.MathSciNetGoogle Scholar
  13. 13.
    Doubilet, P., Rota, G.-C., and Stein, J. (1974), On the Foundation of Combinatorial Theory IX. Combinatorial Methods in Invariant Theory, in “Stud. Appl. Math.”, 53, pp. 185–216.MATHMathSciNetGoogle Scholar
  14. 14.
    Fulton, W., Harris, J. (1991), Representation Theory. A first Course, (Graduate Texts in Mathematics, 129), New York, Springer.MATHGoogle Scholar
  15. 15.
    Goodman, R., Wallach, N. R. (1998), Representations and Invariants of the Classical Groups, (Encyclopedia of Mathematics and its Applications, 68), Cambridge, Cambridge University Press.MATHGoogle Scholar
  16. 16.
    Grace, J. H., Young, A. (1903), The Algebra of Invariants, Cambridge, Cambridge University Press.MATHGoogle Scholar
  17. 17.
    Green, J. A. (1980), Polynomial Representations of GLn, in “Lecture Notes in Math.”, 830.Google Scholar
  18. 18.
    Green, J. A. (1991), Classical Invariants and the General Linear Group, in “Progr. Math.”, 95, pp. 247–72.Google Scholar
  19. 19.
    Grosshans, F. D., Rota, G.-C., Stein, J. (1987), Invariant Theory and Superalgebras, in “Amer. Math. Soc.”.Google Scholar
  20. 20.
    Grosshans, F. D. (1973), Observable Groups and Hilbert’s Fourteenth Problem, in “Amer. J. Math.”, 95, pp. 229–53.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Grosshans, F. D. (1993), The Symbolic Method and Representation Theory, in “Adv. Math.”, 98, pp. 113–42.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Grosshans, F. D. (1997), Algebraic Homogeneous Spaces and Invariant Theory, in “Lecture Notes in Math.”, 1673.Google Scholar
  23. 23.
    Grosshans, F. D. (2003), The Work of Gian-Carlo Rota on Invariant Theory, in “Algebra Universalis”, 49, pp. 213–58.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Grosshans, F. D. (2007), Vector Invariants in Arbitrary Characteristic, in “Transform. Groups”, 12, pp. 499–514.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Hodge, W. V. D. (1943), Some Enumerative Results in the Theory of Forms, in “Proc. Cambridge Philos. Soc.”, 39, pp. 22–30.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Howe, R. (1989), Remarks on Classical Invariant Theory, in “Trans. Amer. Math. Soc.”, 313, pp. 539–70.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Howe, R. (1992), Perspective on Invariant Theory: Schur Duality, Multilpicity-free Actions and Beyond, in “The Schur Lectures, Israel Math. Conf. Proc.”, 8, pp. 1–182.MathSciNetGoogle Scholar
  28. 28.
    Igusa, J. (1954), On the Arithmetic Normality of the Grassmann Variety, in “Proc. Natl. Acad. Sci. USA”, 40, pp. 309–13.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kraft, H., Procesi, C., Classical Invariant Theory, A Primer,
  30. 30.
    Lakshmibai, V., Raghavan, K. N. (2008), Standard Monomial Theory. Invariant Theoretic Approach, Berlin, Springer.MATHGoogle Scholar
  31. 31.
    Losik, M., Michor, P. W., Popov, V. L. (2006), On Polarizations in Invariant Theory, in “J. Algebra”, 301, pp. 406–24.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Pascal, E. (1888), Sopra un teorema fondamentale nella teoria del calcolo simbolico delle Forme ennarie, in “Atti Accad. Naz. Lincei”, 5, pp. 119–24.Google Scholar
  33. 33.
    Procesi, C. (1982), A Primer of Invariant Theory, G. Boffi (notes by), in Brandeis Lecture Notes, 1, Waltham, MA, Brandeis University.Google Scholar
  34. 34.
    Procesi, C. (2006), Lie Groups. An Approach Through Invariants and Representation, New York, Springer.Google Scholar
  35. 35.
    Procesi, C., Rogora, E. (1991), Aspetti geometrici e combinatori della teoria delle rappresentazioni del gruppo unitario, in “Quaderni U. M. I.”, 36.Google Scholar
  36. 36.
    Weyl, H. (1946), The Classical Groups, Princeton, NY, Princeton Univ. Press.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrea Brini
    • 1
  1. 1.Università degli Studi di BolognaBolognaItaly

Personalised recommendations