Indiscrete Variations on Gian-Carlo Rota’s Themes

Invited Chapter
  • Carlo Cellucci


I never met Gian-Carlo Rota but I have often made references to his writings on the philosophy of mathematics, sometimes agreeing, sometimes disagreeing.


Mathematical Object Rota State Ideal Object Mathematical Practice Interior Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspray, W., Kitcher, P. (eds.) (1988), History and Philosophy of Modern Mathematics, Minneapolis, University of Minnesota Press.Google Scholar
  2. Bostock, D. (2009), Philosophies of Mathematics. An Introduction, Madden, MA., Wiley-Blackwell.Google Scholar
  3. Brouwer, L. E. J. (1975), Collected Works, vol. I, A. Heyting (ed.), Amsterdam, North-Holland.Google Scholar
  4. Cellucci, C. (1989), De conversione demonstrationis in definitionem, in G. Corsi, C. Mangione, and M. Mugnai (eds.), Atti del convegno internazionale di storia della logica. Le teorie della modalità, Bologna, CLUEB, pp. 301–6.Google Scholar
  5. Cellucci, C. (1998), Le ragioni della logica, Rome-Bari, Laterza.Google Scholar
  6. Cellucci, C. (2002), Filosofia e matematica, Rome-Bari, Laterza.MATHGoogle Scholar
  7. Cellucci, C. (2006), Introduction to Filosofia e matematica, in R. Hersh (ed.), 18 Unconventional Essays on the Nature of Mathematics, Berlin, Springer, pp. 17–36.CrossRefGoogle Scholar
  8. Cellucci, C. (2007), La filosofia della matematica del Novecento, Rome-Bari, Laterza.Google Scholar
  9. Cellucci, C. (2008a), The Nature of Mathematical Explanation, “Studies in History and Philosophy of Science”, vol. 39, pp. 202–10.Google Scholar
  10. Cellucci, C. (2008b), Why Proof? What is a Proof?, in R. Lupacchini and G. Corsi (eds.), Deduction, Computation, Experiment. Exploring the Effectiveness of Proof, Berlin, Springer, pp. 1–27.Google Scholar
  11. Cellucci, C. (2008c), Perché ancora la filosofia, Rome-Bari, Laterza.Google Scholar
  12. Davies, E. B. (2008), Interview, in V.F. Hendricks and H. Leitgeb (eds.), Philosophy of Mathematics: 5 Questions, New York, Automatic Press/VIP, pp. 87–99.Google Scholar
  13. Descartes, R. (2006), Meditations, Objections, and Replies, R. Ariew and D.A. Cress (eds.), Indianapolis, IN., Hackett.Google Scholar
  14. Dummett, M. (2001), La natura e il futuro della filosofia, Genoa, Il Melangolo.Google Scholar
  15. Field, H. (1989), Realism, Mathematics and Modality, Oxford, Blackwell.Google Scholar
  16. Frege, G. (1964), The Basic Laws of Arithmetic. Exposition of the System, M. Furth (ed.), Berkeley, University of California Press.Google Scholar
  17. Frege, G. (1984), Collected Papers on Mathematics, Logic, and Philosophy, B. McGuinness (ed.), Oxford, Blackwell,MATHGoogle Scholar
  18. Gödel, K. (1995), Collected Works, S. Feferman et al. (eds.), Oxford, Oxford University Press.MATHGoogle Scholar
  19. Hadamard, J. (1996), The Mathematician’s Mind: the Psychology of Invention in the Mathematical Field, Princeton, Princeton University Press.Google Scholar
  20. Hersh, R. (1997), What is Mathematics, really?, Oxford, Oxford University Press.Google Scholar
  21. Hyman, B. M., Pedrick, C. (2006), Anxiety Disorders, Minneapolis, MN., Lerner.Google Scholar
  22. Kac, M., Rota, G.-C., Schwartz, J.T. (1986), Discrete Thoughts. Essays on Mathematics, Science and Philosophy, Boston, Basel, Berlin, Birkhäuser.MATHGoogle Scholar
  23. Kant, I. (1992), Lectures on Logic, J.M. Young (ed.), Cambridge, Cambridge University Press.Google Scholar
  24. Kreisel, G. (1967), Mathematical Logic: What has it Done for the Philosophy of Mathematics?, in R. Schoenman (ed.), Bertrand Russell, Philosopher of the Century, London, Allen and Unwin, pp. 201–72.Google Scholar
  25. Mancosu, P. (ed.) (2008), The Philosophy of Mathematical Practice, Oxford, Oxford University Press.MATHGoogle Scholar
  26. Rota, G.-C. (1986), Misreading the History of Mathematics, in (Kac, Rota, Schwartz, 1986), pp. 231–4.Google Scholar
  27. Rota, G.-C. (1991), The End of Objectivity. The Legacy of Phenomenology. Lectures at MIT, Cambridge, MA., MIT Mathematics Department.Google Scholar
  28. Rota, G.-C. (1997), Indiscrete Thoughts, F. Palombi (ed.), Boston, Basel, Berlin, Birkhäuser.MATHGoogle Scholar
  29. Rota, G.-C. (1999), Lezioni napoletane, F. Palombi (ed.), Neaples, La Città del Sole.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Carlo Cellucci
    • 1
  1. 1.Università di Roma La SapienzaRomaItaly

Personalised recommendations