Image Encryption and Chaotic Cellular Neural Network

  • Jun Peng
  • Du Zhang

Machine learning has been playing an increasingly important role in information security and assurance. One of the areas of new applications is to design cryptographic systems by using chaotic neural network due to the fact that chaotic systems have several appealing features for information security applications. In this chapter, we describe a novel image encryption algorithm that is based on a chaotic cellular neural network. We start by giving an introduction to the concept of image encryption and its main technologies, and an overview of the chaotic cellular neural network. We then discuss the proposed image encryption algorithm in details, which is followed by a number of security analyses (key space analysis, sensitivity analysis, information entropy analysis and statistical analysis). The comparison with the most recently reported chaos-based image encryption algorithms indicates that the algorithm proposed in this chapter has a better security performance. Finally, we conclude the chapter with possible future work and application prospects of the chaotic cellular neural network in other information assurance and security areas.


Chaotic System Encryption Algorithm Image Encryption Cellular Neural Network Stream Cipher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alvarez G, Li S J (2006) Some basic cryptographic requirements for chaos-based crypto-systems. Int J Bifurcation Chaos 16:2129-2151CrossRefMathSciNetGoogle Scholar
  2. [2]
    Amigo J M, Kocarev L, Szczepanski J (2007) Theory and practice of chaotic cryptography. Phys Lett A 366: 211-216CrossRefGoogle Scholar
  3. [3]
    Arthur T B, Kan Y (2001) Magic ‘squares’ indeed. Math Gazette 108:152-156Google Scholar
  4. [4]
    Baptista M S (1998) Cryptography with chaos. Phys Lett A 240:50-54MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Behnia S, Akhshani A, Mahmodi H (2008) A novel algorithm for image encryption based on mixture of chaotic map. Chaos, Solitons, Fractals 35:408-419MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Bourbakis N (1997) Image data compression encryption using G-SCAN pattern. Proc IEEE Conf SMC, 1117-1120Google Scholar
  7. [7]
    Bourbakis N, Alexopoulos C (1992) Picture data encryption using SCAN patterns. Pattern Recogn 25:567-581CrossRefGoogle Scholar
  8. [8]
    Bourbakis N, Alexopoulos C (1999) A fractal based image processing language - formal modeling. Pattern Recogn 32:317-338CrossRefGoogle Scholar
  9. [9]
    Chang H T (2004) Arbitrary affine transformation and their composition effects for two dimensional fractal sets. Image Vis Comput 22:1117-1127CrossRefGoogle Scholar
  10. [10]
    Charilaos C, Athanassios S, Touradj E (2000) The JPEG2000 still image coding system. IEEE Trans Consum Electron 46:1103-1127CrossRefGoogle Scholar
  11. [11]
    Chen G R, Mao Y B, Chui C K (2004) A symmetric image encryption based on 3D chaotic maps. Chaos, Solitons, Fractals 21:749-761MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Chen H Z, Dai M D, Wu X Y (1994) Bifurcation and chaos in discrete-time cellular neural networks. 3rd IEEE Int Wkshp Cellular Neural Networks and Their Applicat, CNNA '94, 309-315Google Scholar
  13. [13]
    Cheng H, Li X (2000) Partial encryption of compressed images and videos. IEEE Trans Sig Proc 48:2439-2451CrossRefGoogle Scholar
  14. [14]
    Chua L O, Hasler M, Moschytz G S (1995) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circ Syst I 42:559-577CrossRefMathSciNetGoogle Scholar
  15. [15]
    Chua L O, Yang L (1988a) Cellular neural network: theory. IEEE Trans Circ Syst 35:1257-1272MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Chua L O, Yang L (1988b) Cellular neural network: applications. IEEE Trans Circ Syst 35:1273-1290CrossRefMathSciNetGoogle Scholar
  17. [17]
    Clarke R J (1995) Digital compression of still images and video. Academic Press, New YorkGoogle Scholar
  18. [18]
    Cox I J, Kilian J, Leighton F T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6:1673-1687CrossRefGoogle Scholar
  19. [19]
    Csapodi M, Vandewalle J, Roska T (1998) High speed calculation of cryptographic hash functions by CNN Chips. 1998 Fifth IEEE Int Wkshp Cellular Neural Networks and Their Applicat, CNNA '98, 14-17Google Scholar
  20. [20]
    Dang P P, Chau P M (2000) Image encryption for secure Internet multimedia applications. IEEE Trans Consum Electron 46:395-403CrossRefGoogle Scholar
  21. [21]
    Fan Z, Josef A N (1991) A chaotic attractor with cellular neural networks. IEEE Trans Circ Syst 38:811-812CrossRefGoogle Scholar
  22. [22]
    Fridrich J (1997) Image encryption based on chaotic maps. Proc IEEE Int Conf Syst Man Cybern, 1105-1110Google Scholar
  23. [23]
    Fridrich J (1998) Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifurcation Chaos 8:1259-1284MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Gao H J, Zhang Y S, Liang S Y (2006) A new chaotic algorithm for image encryption. Chaos, Solitons, Fractals 29:393-399MATHCrossRefGoogle Scholar
  25. [25]
    Gao Q, Moschytz G S (2004) Fingerprint feature matching using CNNs. Proc 2004 Int Symp Circ Syst 3:73-76Google Scholar
  26. [26]
    Gao T G, Chen Z Q (2008) A new image encryption algorithm based on hyper-chaos. Phys Lett A 372:394-400CrossRefGoogle Scholar
  27. [27]
    Goedgebuer J P, Levy P, Larger L (2002) Optical communication with synchronized hyperchaos generated electro optically. IEEE J Quantum Electron 38:1178-1183CrossRefGoogle Scholar
  28. [28]
    Guzman J, Astrom K J, Dormido S (2008) Interactive learning modules for PID control. IEEE Contr Syst Mag 28:118-134CrossRefGoogle Scholar
  29. [29]
    He Z, Li K (2000) TDMA secure communication based on synchronization of Chua's circuits. J Circ Syst Comp, 10:147-158Google Scholar
  30. [30]
    He Z Y, Zhang Y F, Lu H T (1999) The dynamic character of cellular neural network with applications to secure communication. J Chin Inst Commun 20:59-67Google Scholar
  31. [31]
    Jessl J, Bertram M, Hagen H (2005) Web-based progressive geometry transmission using subdivision-surface wavelets. Proc 10th Int Conf 3D Web Technol, 29-35Google Scholar
  32. [32]
    Kocarev L (2001) Chaos-based cryptography: A brief overview. IEEE Circ Syst Mag 1:6-21CrossRefGoogle Scholar
  33. [33]
    Kocarev L, Jakimoski G (2001) Logistic map as a block encryption algorithm. Phys Lett A 289:199-206MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    Lai X J, Massey J L (1990) A proposal for a new block encryption standard. Adv in Cryptology-EUROCRYPT'90, Springer-Berlin, LNCS 473:389-404MathSciNetGoogle Scholar
  35. [35]
    Lee J W, Giraud-Carrier C (2007) Transfer Learning in Decision Trees. 2007 Int Joint Conf Neural Networks, 726-731Google Scholar
  36. [36]
    Li P, Li Z, Halang W A (2007) A stream cipher based on a spatiotemporal chaotic system. Chaos, Solitons, Fractals 32:1867-1876MATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    Li S J, Zheng X (2002) Cryptanalysis of a chaotic image encryption method. Proc IEEE Int Symp Circ Syst 2:26-29Google Scholar
  38. [38]
    Li Z G, Li K, Wen C Y (2003) A new chaotic secure communication system. IEEE Trans Commun 51:1306-1312CrossRefGoogle Scholar
  39. [39]
    Li X B, Knipe J, Cheng H (1997) Image compression and encryption using tree structures. Pattern Recogn Lett 18: 1253-1259CrossRefGoogle Scholar
  40. [40]
    Lian S G, Wang Z Q, Li Z X (2004) Secure multimedia encoding schemes based on quad-tree structure. J Image and Graphics 9:353-359Google Scholar
  41. [41]
    Maniccam S S, Bourbakis N (2004) Image and video encryption using SCAN patterns. Pattern Recogn 37:725-737CrossRefGoogle Scholar
  42. [42]
    Martin K, Lukac R, Plataniotis K N (2005) Efficient encryption of compressed color images. Proc IEEE Int Symp Ind Electron 3:1245-1250Google Scholar
  43. [43]
    Mascolo S, Grassi G (1998) Observers for hyperchaos synchronization with application to secure communications. Proc IEEE Int Conf Control App 2:1016-1020Google Scholar
  44. [44]
    Masuda N, Aihara K (2002) Cryptosystems with discretized chaotic maps. IEEE Trans Circ Syst I 49:28-40CrossRefMathSciNetGoogle Scholar
  45. [45]
    Matthews R (1989) On the derivation of a chaotic encryption algorithm. Cryptologia XIII:29-42Google Scholar
  46. [46]
    Mozina M, Zabkar J, Bratko I (2007) Argument based machine learning. Artificial Intelligence 171:922-937CrossRefMathSciNetGoogle Scholar
  47. [47]
    Parberry I (1997) An efficient algorithm for the Knight's tour problem. Discrete Appl Math 73:251-260MATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    Pareek N K, Patidar V, Sud K K (2006) Image encryption using chaotic logistic map. Image Vis Comput 24:926-934CrossRefGoogle Scholar
  49. [49]
    Parker A T, Short K M (2001) Reconstructing the keystream from a chaotic encryption scheme. IEEE Trans Circ Syst I 48:104-12CrossRefMathSciNetGoogle Scholar
  50. [50]
    Pecora L M, Carroll T L (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821-824CrossRefMathSciNetGoogle Scholar
  51. [51]
    Pecora L M, Carroll T L (1991) Driving systems with chaotic signals. Phys Rev A 44:2374-2383CrossRefGoogle Scholar
  52. [52]
    Perez G, Cerdeira H A (1995) Extracting messages masked by chaos. Phys Rev Lett 74:1970-1973CrossRefGoogle Scholar
  53. [53]
    Pisarchik A N, Flores-Carmona N J, Carpio-Valadez M (2006) Encryption and decryption of images with chaotic map lattices. Chaos 6:033118.1-033118.6Google Scholar
  54. [54]
    Qiu S H, Ma Z G (2003) An image cryptosystem based on general cat map. J Commun Chin 24:51-57Google Scholar
  55. [55]
    Radha H, Vetterli M, Leonardi R (1996) Image compression using binary space partitioning trees. IEEE Trans Image Process 5:1610-1624CrossRefGoogle Scholar
  56. [56]
    Rhouma R, Meherzi S, Belghith S (2008) OCML-based colour image encryption. Chaos, Solitons Fractals doi:10.1016/j.chaos.2007.07.083Google Scholar
  57. [57]
    Rivest R L, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public key cryptosystems. Commun ACM 21:120-126MATHCrossRefMathSciNetGoogle Scholar
  58. [58]
    Scharinger J (1998) Fast encryption of image data using chaotic Kolmogorov flows. J Electron Imaging 7:318-325CrossRefGoogle Scholar
  59. [59]
    Schneier B (1996) Applied Cryptography (2nd edn). John Wiley & Sons Press, New YorkGoogle Scholar
  60. [60]
    Shannon C E (1949) Communication theory of secrecy system. Bell Syst Tech J 28:656-715MathSciNetGoogle Scholar
  61. [61]
    Shiang H P, Tu W, van der Schaar M (2008) Dynamic Resource Allocation of Delay Sensitive Users Using Interactive Learning over Multi-Carrier Networks. 2008 IEEE Int Conf Commun, 2502-2506Google Scholar
  62. [62]
    Slavova A (1998) Dynamic properties of cellular neural networks with nonlinear output function. IEEE Trans Circ Syst I 45:587-590MATHCrossRefMathSciNetGoogle Scholar
  63. [63]
    Su T J, Du Y Y, Cheng Y J et al (2005) A fingerprint recognition system using cellular neural networks. 9th Int Wkshp Cellular Neural Networks App, 170-173Google Scholar
  64. [64]
    Quattoni A, Collins M, Darrell T (2008) Transfer learning for image classification with sparse prototype representations. 2008 IEEE Conf Comp Vis and Pattern Recogn, 1-8Google Scholar
  65. [65]
    Vladimir S U, Jean-Pierre G, Laurent L (2001) Communicating with optical hyperchaos: information encryption and decryption in delayed nonlinear feedback systems. Phys Rev Lett 86:1892-1895CrossRefGoogle Scholar
  66. [66]
    Wong K W (2003) A combined chaotic cryptographic and hashing scheme. Phys Lett A 307:292-298MATHCrossRefMathSciNetGoogle Scholar
  67. [67]
    Wolf A, Swift J B, Swinney H L (1985) Detecting Lyapunov Exponents from a Time Series. Physica D 16:285-317MATHCrossRefMathSciNetGoogle Scholar
  68. [68]
    Yang T, Lin B Y, Chun M Y (1998) Application of neural networks to unmasking chaotic secure communication. Physica D, 124:248-257MATHCrossRefGoogle Scholar
  69. [69]
    Yang T, Wu C W, Chua L O (1997) Cryptography based on chaotic systems. IEEE Trans Circ Syst I 44:469-472MATHCrossRefGoogle Scholar
  70. [70]
    Yang Z X, Karahoca A (2006) An anomaly intrusion detection approach using cellular neural networks. Comput Inf Sci - ISCIS'06, Springer-Berlin, LNCS 4263:908-917Google Scholar
  71. [71]
    Yen J C, Guo J I (2000) A new chaotic key-based design for image encryption and decryption. Proc IEEE Int Conf Circ Syst 4:49-52Google Scholar
  72. [72]
    Zhang W, Peng J, Yang H Q (2005) A digital image encryption scheme based on the hybrid of cellular neural network and logistic map. Adv Neural Networks, ISNN'05, Springer-Berlin, LNCS 3497:860-867Google Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  1. 1.College of Electronic Information Engineering, Chongqing University of Science and TechnologyChongqingChina
  2. 2.Department of Computer ScienceCalifornia State UniversitySacramentoUSA

Personalised recommendations