Advertisement

Fluorescence Solvent Relaxation in Cationic Membranes

  • Agnieszka Olżyńska
  • Piotr Jurkiewicz
  • Martin Hof
Part of the Reviews in Fluorescence book series (RFLU, volume 2007)

Abstract

The interest in positively charged lipid membranes stems from biology, where cationic lipids are used for delivery of nucleic acids into host cells to achieve transgene expression or gene regulation – techniques that are essential for genomics and proteomics. Electrostatic interaction of polyanionic DNA or RNA with cationic lipids leads to the formation of the so-called lipoplex, which functions as a transfection vector [1–4]. Complexation with lipids facilitates the cell uptake of genetic material, in particular crossing the hydrophobic barrier of cellular membrane. The efficiency of lipofection is still lower than transfection with viral vectors, but this is the safety and biocompatibility that drew attention to the lipofection in medicine.

Keywords

Lipid Bilayer Cationic Lipid Liquid Crystalline State Solvent Relaxation Headgroup Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. W. Hui, M. Langner, Y. L. Zhao, P. Ross, E. Hurley, and K. Chan, The role of helper lipids in cationic liposome-mediated gene transfer, Biophys. J. 71, 590–599 (1996).CrossRefPubMedGoogle Scholar
  2. 2.
    T. Kral, A. Benda, M. Hof, and M. Langner, Some aspects of DNA condensation observed by fluorescence correlation spectroscopy. In Reviews in Fluorescence Vol. 2, edited by C. D. Geddes and J. R. Lakowicz (Springer, New York, 2005), pp. 109–124.CrossRefGoogle Scholar
  3. 3.
    T. Kral, M. Hof, P. Jurkiewicz, and M. Langner, Fluorescence correlation spectroscopy (FCS) as a tool to study DNA condensation with hexadecyltrimethylammonium bromide (HTAB), Cell. Mol. Biol. Lett. 7, 203–211 (2002).PubMedGoogle Scholar
  4. 4.
    J. O. Radler, I. Koltover, T. Salditt, and C. R. Safinya, Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes, Science 275(5301), 810–814 (1997).CrossRefPubMedGoogle Scholar
  5. 5.
    P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen, Lipofection – a Highly Efficient, Lipid-Mediated DNA-Transfection Procedure, Proc. Natl. Acad. Sci. USA 84(21), 7413–7417 (1987).CrossRefPubMedGoogle Scholar
  6. 6.
    M. Langner, and K. Kubica, The electrostatics of lipid surfaces, Chem. Phys. Lipids 101M(1), 3–35 (1999).CrossRefPubMedGoogle Scholar
  7. 7.
    G. Byk, J. Sato, C. Mattler, M. Frederic, and D. Scherman, Novel non-viral vector for gene delivery: Synthesis of a second-generation library of mono-functionalized poly-(guanidinium)amines and their introduction into cationic lipids, Biotechnol. Bioeng. 61, 81–87 (1998).CrossRefPubMedGoogle Scholar
  8. 8.
    G. Byk and D. Scherman, Novel cationic lipids for gene delivery and gene therapy, Exp. Opin. Ther. Patents 8, 1125–1141 (1998).CrossRefGoogle Scholar
  9. 9.
    K. L. Hong, W. W. Zheng, A. Baker, and D. Papahadjopoulos, Stabilization of cationic liposome-plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery, FEBS Lett. 400(2), 233–237 (1997).CrossRefPubMedGoogle Scholar
  10. 10.
    A. Martin-Herranz, A. Ahmad, H. M. Evans, K. Ewert, U. Schulze, and C. R. Safinya, Surface functionalized cationic lipid-DNA complexes for gene delivery: PEGylated lamellar complexes exhibit distinct DNA-DNA interaction regimes, Biophys. J. 86(2), 1160–1168 (2004).CrossRefPubMedGoogle Scholar
  11. 11.
    T. Borowik, K. Widerak, M. Ugorski, and M. Langer, Combined effect of surface electrostatic charge and poly(ethyl glycol) on the association of liposomes with colon carcinoma cells, J. Liposome Res. 15(3–4), 199–213 (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    L. Stamatatos, R. Leventis, M. J. Zuckermann, and J. R. Silvius, Interactions of cationic lipid vesicles with negatively charged phospholipid-vesicles and biological-membranes, Biochemistry 27(11), 3917–3925 (1988).CrossRefPubMedGoogle Scholar
  13. 13.
    R. F. Epand, R. Kraayenhof, G. J. Sterk, H. W. W. F. Sang, and R. M. Epand, Fluorescent probes of membrane surface properties, Biochim. Biophys. Acta 1284, 191–195 (1996).CrossRefPubMedGoogle Scholar
  14. 14.
    R. D. Kaiser, and E. London, Location of diphenylhexatriene (DPH) and its derivatives within membranes: Comparition of different fluorescence quenching analysis of membrane depth, Biochemistry 37, 8180–8190 (1998).CrossRefPubMedGoogle Scholar
  15. 15.
    S. H. White, and M. C. Wiener, Determination of the structure of fluid lipid bilayer membranes. In Permeability and stability of lipid bilayers, edited by E. A. Disalvo and S. A. Simon (CRC Press, Boca Raton, 1995), pp. 1–19.Google Scholar
  16. 16.
    J. F. Nagle, and S. Tristram-Nagle, Structure of lipid bilayers, Biochim. Biophys. Acta 1469, 159–195 (2000).PubMedGoogle Scholar
  17. 17.
    S. J. Marrink, and A. E. Mark, Effect of undulations on surface tension in simulated bilayers, J. Phys. Chem. B 105, 6122–6127 (2001).CrossRefGoogle Scholar
  18. 18.
    S. J. Marrink, D. P. Tieleman, A. R. v. Buuren, and H. J. C. Berendsen, Membrane and water: An interesting relationship, Faraday Discuss. 103, 191–201 (1996).CrossRefGoogle Scholar
  19. 19.
    S. J. Eastman, C. Siegel, J. Tousignant, A. E. Smith, S. H. Cheng, and R. K. Scheule, Biophysical characterization of cationic lipid: DNA complexes, Biochim. Biophys. Acta 1325, 41–62 (1997).CrossRefPubMedGoogle Scholar
  20. 20.
    M. Langner, The intracellular fate of non-viral DNA carriers, Cell. Mol. Biol. Lett. 5, 295–313 (2000).Google Scholar
  21. 21.
    J. Gabrielska, S. Przestalski, A. Miszta, M. Soczynska-Kordala, and M. Langner, The effect of cholesterol on the absorption of phenyltin compounds onto phosphatidylcholine and sphingomyelin liposome membranes, Appl. Organomet. Chem. 18, 9–14 (2004).CrossRefGoogle Scholar
  22. 22.
    M. Langner, and H. Kleszczynska, Estimation of the organic compounds partition into phosphatidylcholine bilayers with pH sensitive fluorescence probe, Cell. Mol. Biol. Lett. 2, 15–24 (1997).Google Scholar
  23. 23.
    R. Hutterer, F. W. Schneider, and M. Hof, Time-resolved emission spectra and anisotropy profiles for symmetric diacyl- and dietherphosphatidylcholines, J. Fluorescence 7, 27–33 (1997).CrossRefGoogle Scholar
  24. 24.
    A. S. Klymchenko, G. Duportail, A. P. Demchenko, and Y. Mely, Bimodal distribution and fluorescence response of environment-sensitive probes in lipid bilayers, Biophys. J. 86(5), 2929–2941 (2004).CrossRefPubMedGoogle Scholar
  25. 25.
    R. Hutterer, F. W. Schneider, W. T. Hermens, R. Wagenvoord, and M. Hof, Binding of prothrombin and its fragment 1 to phospholipid membranes studied by the solvent relaxation technique, Biochim. Biophys. Acta 1414(1–2), 155–164 (1998).PubMedGoogle Scholar
  26. 26.
    A. Olzynska, M. Przybylo, J. Gabrielska, Z. Trela, S. Przestalski, and M. Langner, Di- and tri-phenyltin chlorides transfer across a model lipid bilayer, Appl. Organomet. Chem. 19(10), 1073–1078 (2005).CrossRefGoogle Scholar
  27. 27.
    P. Jurkiewicz, J. Sykora, A. Olzynska, J. Humplickova, and M. Hof, Solvent relaxation in phospholipid bilayers: Principles and recent applications, J. Fluorescence 15(6), 883–894 (2005).CrossRefGoogle Scholar
  28. 28.
    E. G. Finer, and A. Darke, Phospholipid hydration studied by deuteron magnetic-resonance spectroscopy, Chem. Phys. Lipids 12(1), 1–16 (1974).CrossRefPubMedGoogle Scholar
  29. 29.
    P. O. Westlund, Line shape analysis of NMR powder spectra of (H2O)-H-2 in lipid bilayer systems, J. Phys. Chem. B 104(25), 6059–6064 (2000).CrossRefGoogle Scholar
  30. 30.
    S. Mazeres, V. Schram, J. F. Tocanne, and A. Lopez, 7-Nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: Differences in fluorescence behavior, Biophys. J. 71(1), 327–335 (1996).CrossRefPubMedGoogle Scholar
  31. 31.
    D. L. Bernik, D. Zubiri, E. Tymczyszyn, and E. A. Disalvo, Polarity and packing at the carbonyl and phosphate regions of lipid bilayers, Langmuir 17(21), 6438–6442 (2001).CrossRefGoogle Scholar
  32. 32.
    M. C. Rheinstadter, C. Ollinger, G. Fragneto, F. Demmel, and T. Salditt, Collective dynamics of lipid membranes studied by inelastic neutron scattering, Phys. Rev. Lett. 93(10), (2004).Google Scholar
  33. 33.
    S. Tristram-Nagle, and J. F. Nagle, Lipid bilayers: Thermodynamics, structure, fluctuations, and interactions, Chem. Phys. Lipids 127(1), 3–14 (2004).CrossRefPubMedGoogle Scholar
  34. 34.
    R. Hutterer, A. B. J. Parusel, and M. Hof, Solvent relaxation of Prodan and Patman: A useful tool for the determination of polarity and rigidity changes in membranes, J. Fluorescence 8(4), 389–393 (1998).CrossRefGoogle Scholar
  35. 35.
    R. Hutterer, F. W. Schneider, H. Sprinz, and M. Hof, Binding and relaxation behaviour of Prodan and Patman in phospholipid vesicles: A fluorescence and H-1 NMR study, Biophys. Chem. 61(2–3), 151–160 (1996).CrossRefPubMedGoogle Scholar
  36. 36.
    J. Sykora, and M. Hof, Solvent relaxation in phospholipid bilayers: Physical understanding and biophysical applications, Cell. Mol. Biol. Lett. 7(2), 259–261 (2002).PubMedGoogle Scholar
  37. 37.
    M. Hof, Solvent relaxation in biomembranes. In Applied Fluorescence in Chemistry, Biology, and Medicine, edited by W. Rettig, B. Strehmel and S. Schrader (Springer Verlag, Berlin, 1999), 439–456.Google Scholar
  38. 38.
    M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli, Subpicosecond measurements of polar solvation dynamics – coumarin-153 revisited, J. Phys. Chem. 99(48), 17311–17337 (1995).CrossRefGoogle Scholar
  39. 39.
    R. S. Fee, and M. Maroncelli, Estimating the time-zero spectrum in time-resolved emission measurements of solvation dynamics, Chem. Phys. 183(2–3), 235–247 (1994).CrossRefGoogle Scholar
  40. 40.
    J. Sykora, P. Kapusta, V. Fidler, and M. Hof, On what time scale does solvent relaxation in phospholipid bilayers happen? Langmuir 18(3), 571–574 (2002).CrossRefGoogle Scholar
  41. 41.
    L. Nilsson, and B. Halle, Molecular origin of time-dependent fluorescence shifts in proteins, Proc. Natl. Acad. Sci. USA 102(39), 13867–13872 (2005).CrossRefPubMedGoogle Scholar
  42. 42.
    J. Sykora, P. Jurkiewicz, R. M. Epand, R. Kraayenhof, M. Langner, and M. Hof, Influence of the curvature on the water structure in the headgroup region of phospholipid bilayer studied by the solvent relaxation technique, Chem. Phys. Lipids 135(2), 213–221 (2005).CrossRefPubMedGoogle Scholar
  43. 43.
    J. Sykora, V. Mudogo, R. Hutterer, M. Nepras, J. Vanerka, P. Kapusta, V. Fidler, and M. Hof, ABA-C-15: A new dye for probing solvent relaxation in phospholipid bilayers, Langmuir 18(24), 9276–9282 (2002).CrossRefGoogle Scholar
  44. 44.
    M. Yang, and R. Richert, Observation of heterogeneity in the nanosecond dynamics of a liquid, J. Chem. Phys. 115(6), 2676–2680 (2001).CrossRefGoogle Scholar
  45. 45.
    R. Richert, Spectral diffusion in liquids with fluctuating solvent responses: Dynamical heterogeneity and rate exchange, J. Chem. Phys. 115(3), 1429–1434 (2001).CrossRefGoogle Scholar
  46. 46.
    R. Jimenez, G. R. Fleming, P. V. Kumar, and M. Maroncelli, Femtosecond solvation dynamics of water, Nature 369(6480), 471–473 (1994).CrossRefGoogle Scholar
  47. 47.
    G. Weber, and F. J. Farris, Synthesis and spectral properties of a hydrophobic fluorescent-probe – 6-Propionyl-2-(Dimethylamino)Naphthalene, Biochemistry 18(14), 3075–3078 (1979).CrossRefPubMedGoogle Scholar
  48. 48.
    P. L. G. Chong, Effects of hydrostatic-pressure on the location of Prodan in lipid bilayers and cellular membranes, Biochemistry 27(1), 399–404 (1988).CrossRefPubMedGoogle Scholar
  49. 49.
    R. Hutterer and M. Hof, Probing ethanol-induced phospholipid phase transitions by the polarity sensitive fluorescence probes Prodan and Patman, Z. Phys. Chem. 216, 333–346 (2002).Google Scholar
  50. 50.
    A. Olzynska, A. Zan, P. Jurkiewicz, J. Sykora, G. Grobner, M. Langner, and M. Hof, Molecular interpretation of fluorescence solvent relaxation of Patman and H-2 NMR experiments in phosphatidylcholine bilayers, Chem. Phys. Lipids 147(2), 69–77 (2007).CrossRefPubMedGoogle Scholar
  51. 51.
    K. Rieber, J. Sykora, A. Olzynska, R. Jelinek, G. Cevc, and M. Hof, The use of solvent relaxation technique to investigate headgroup hydration and protein binding of simple and mixed phosphatidylcholine/surfactant bilayer membranes, Biochim. Biophys. Acta 1768(5), 1050–1058 (2007).CrossRefPubMedGoogle Scholar
  52. 52.
    T. Parasassi, E. K. Krasnowska, L. Bagatolli, and E. Gratton, Laurdan and Prodan as polarity-sensitive fluorescent membrane probes, J. Fluorescence 8(4), 365–373 (1998).CrossRefGoogle Scholar
  53. 53.
    P. L. G. Chong and P. T. T. Wong, Interactions of Laurdan with phosphatidylcholine liposomes – a high-Pressure ftir study, Biochim. Biophys. Acta 1149(2), 260–266 (1993).CrossRefPubMedGoogle Scholar
  54. 54.
    M. Viard, J. Gallay, M. Vincent, and M. Paternostre, Origin of Laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: A time-resolved fluorescence study, Biophys. J. 80(1), 347–359 (2001).CrossRefPubMedGoogle Scholar
  55. 55.
    J. R. Lakowicz, D. R. Bevan, B. P. Maliwal, H. Cherek, and A. Balter, Synthesis and characterization of a fluorescence probe of the phase-transition and dynamic properties of membranes, Biochemistry 22(25), 5714–5722 (1983).CrossRefGoogle Scholar
  56. 56.
    A. Chattopadhyay and E. London, Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids, Biochemistry 26(1), 39–45 (1987).CrossRefPubMedGoogle Scholar
  57. 57.
    F. S. Abrams, and E. London, Extension of the parallax analysis of membrane penetration depth to the polar-region of model membranes – use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup, Biochemistry 32(40), 10826–10831 (1993).CrossRefPubMedGoogle Scholar
  58. 58.
    P. Jurkiewicz, A. Olzynska, M. Langner, and M. Hof, Headgroup hydration and mobility of DOTAP/DOPC bilayers: A fluorescence solvent relaxation study, Langmuir 22(21), 8741–8749 (2006).CrossRefPubMedGoogle Scholar
  59. 59.
    S. S. Antollini, and F. J. Barrantes, Disclosure of discrete sites for phospholipid and sterols at the protein–lipid interface in native acetylcholine receptor-rich membrane, Biochemistry 37(47), 16653–16662 (1998).CrossRefPubMedGoogle Scholar
  60. 60.
    C. D. Geddes, Optical halide sensing using fluorescence quenching: Theory, simulations and applications – a review, Meas. Sci. Technol. 12(9), R53–R88 (2001).CrossRefGoogle Scholar
  61. 61.
    K. Bhattacharyya, and B. Bagchi, Slow dynamics of constrained water in complex geometries, J. Phys. Chem. A 104(46), 10603–10613 (2000).CrossRefGoogle Scholar
  62. 62.
    S. K. Pal, and A. H. Zewail, Dynamics of water in biological recognition, Chem. Rev. 104(4), 2099–2123 (2004).CrossRefPubMedGoogle Scholar
  63. 63.
    J. R. Silvius, Anomalous mixing of zwitterionic and anionic phospholipids with double-chain cationic amphiphiles in lipid bilayers, Biochim. Biophys. Acta 1070(1), 51–59 (1991).CrossRefPubMedGoogle Scholar
  64. 64.
    J. C. W. Shepherd, and G. Buldt, Zwitterionic dipoles as a dielectric probe for investigating head group mobility in phospholipid membranes, Biochim. Biophys. Acta 514(1), 83–94 (1978).CrossRefPubMedGoogle Scholar
  65. 65.
    J. Seelig, P. M. Macdonald, and P. G. Scherer, Phospholipid head groups as sensors of electric charge in membranes, Biochemistry 26(24), 7535–7541 (1987).CrossRefPubMedGoogle Scholar
  66. 66.
    P. G. Scherer, and J. Seelig, Electric charge effects on phospholipid headgroups – phosphatidylcholine in mixtures with cationic and anionic amphiphiles, Biochemistry 28(19), 7720–7728 (1989).CrossRefPubMedGoogle Scholar
  67. 67.
    A. A. Gurtovenko, M. Patra, M. Karttunen, and I. Vattulainen, Cationic DMPC/DMTAP lipid bilayers: Molecular dynamics study, Biophys. J. 86(6), 3461–3472 (2004).CrossRefPubMedGoogle Scholar
  68. 68.
    A. Olzynska, P. Jurkiewicz, and M. Hof, Properties of mixed cationic membranes studied by fluorescence solvent relaxation, J. Fluorescence (in press) (2008).Google Scholar
  69. 69.
    S. J. Ryhanen, J. M. I. Alakoskela, and P. K. J. Kinnunen, Increasing surface charge density induces interdigitation in vesicles of cationic amphiphile and phosphatidylcholine, Langmuir 21(13), 5707–5715 (2005).CrossRefPubMedGoogle Scholar
  70. 70.
    L. F. Zhang, T. A. Spurlin, A. A. Gewirth, and S. Granick, Electrostatic stitching in gel-phase supported phospholipid bilayers, J. Phys. Chem. B 110(1), 33–35 (2006).CrossRefPubMedGoogle Scholar
  71. 71.
    P. Jurkiewicz, A. Okruszek, M. Hof, and M. Langner, Associating oligonucleotides with positively charged liposomes, Cell. Molec. Biol. Lett. 8, 77–84 (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Agnieszka Olżyńska
    • 1
  • Piotr Jurkiewicz
    • 1
  • Martin Hof
    • 1
  1. 1.J. Heyrovský Institute of Physical Chemistry of the ASCR182 23 Prague 8Czech Republic

Personalised recommendations