Photophysics and Biophysical Applications of Benzo[a]phenoxazine Type Fluorophores

  • Paulo J.G. Coutinho
Part of the Reviews in Fluorescence book series (RFLU, volume 2007)


In recent years, the application of photoluminescence methods to biomedical sciences has proved to be very successful, as shown by the number of publications in the last decade. The high sensitivity of fluorescence to the local molecular environment makes it possible to probe complex mediums and/or materials from a wide range of aspects: local polarity effects, specific physical and chemical interactions, and also morphological and topological constraints [1–3].


Critical Micelle Concentration Fluorescence Quantum Yield Fluorescence Anisotropy Nile Blue Twisted Intramolecular Charge Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. N. Miller, Fluorescence energy transfer methods in bioanalysis, Analyst, 130, 265–270, 2005.CrossRefPubMedGoogle Scholar
  2. 2.
    K. Suhling, J. Siegel, PMP Lanigan, S. Lévêque-Fort, SED Webb, D. Phillips, DM Davis and PMW French, Time-resolved fluorescence anisotropy imaging applied to live cells, Optics Letters, 29, 584–586, 2004.CrossRefPubMedGoogle Scholar
  3. 3.
    M. Antiaa, L. D. Islasa, D. A. Bonessc, G. Baneyxa and V. Vogel, Single molecule fluorescence studies of surface-adsorbed fibronectin, Biomaterials, 27, 679–690, 2006.CrossRefGoogle Scholar
  4. 4.
    P. Greenspan and S. D. Fowler, Spectrofluorometric studies of the lipid probe, Nile Red, Journal of Lipid Research, 26, 781–789, 1985.PubMedGoogle Scholar
  5. 5.
    Ira and G. Krishnamoorthy, Probing the Link between Proton Transport and Water Content in Lipid Membranes, Journal of Physical Chemistry B, 105, 1484–1488, 2001.CrossRefGoogle Scholar
  6. 6.
    M. Mazumdar, P. K. Parrack and B. Bhattacharyya, European Journal of Biochemistry, 204, 127–132, 1992,CrossRefPubMedGoogle Scholar
  7. 7.
    D. L. Sackett and J. Wolff, Nile Red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces, Analytical Biochemistry, 167, 228–234, 1987.CrossRefPubMedGoogle Scholar
  8. 8.
    D. M. Davis and D. J. S. Birch, Extrinsic fluorescence probe study of human serum albumin using Nile Red , Journal of Fluorescence, 23–32, 1996.Google Scholar
  9. 9.
    N. C. Maiti, M. M. G. Krishna, P. J. Britto, and N. Periasamy, Fluorescence dynamics of dye probes in micelles, Journal of Physical Chemistry B, 101, 11051–11060, 1997.CrossRefGoogle Scholar
  10. 10.
    A. Datta, D. Mandal, S. Kumar Pal and K. Bhattacharyya, Intramolecular charge transfer processes in confined systems. Nile Red in reverse micelles, Journal of Physical Chemistry B, 101, 10221–10225, 1997.CrossRefGoogle Scholar
  11. 11.
    V. J. P. Srivatsavoy, Enhancement of excited state nonradiative deactivation of Nile Red in γ-cyclodextrin: evidence for multiple inclusion complexes, Journal of Luminescence, 82, 17–23, 1999.CrossRefGoogle Scholar
  12. 12.
    G. Hungerford, E. M. S. Castanheira, M. E. C. D. Real Oliveira, M. da Graca Miguel and H. D. Burrows, Monitoring ternary systems of C12E5/water/tetradecane via the fluorescence of solvatochromic probes, Journal of Physical Chemistry B, 106, 4061–4069, 2002.CrossRefGoogle Scholar
  13. 13.
    A. Kumar Dutta, K. Karnada and K. Ohta, Langmuir-Blodgett films of Nile Red: a steady-state and time-resolved fluorescence study , Chemical Physics Letters, 258, 369–375, 1996.CrossRefGoogle Scholar
  14. 14.
    S. Uppili, K. J. Thomas, E. M. Crompton, and V. Ramamurthy, Probing zeolites with organic molecules: supercages of X and Y zeolites are superpolar, Langmuir, 16, 265–274, 2000.CrossRefGoogle Scholar
  15. 15.
    A. J. Carmichael and K. R. Seddon, Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red, Journal of Physical Organic Chemistry, 13, 591–595, 2000.CrossRefGoogle Scholar
  16. 16.
    S. Zhou and K. D. Cook, Probing solvent fractionation in electrospray droplets with laser-induced fluorescence of a solvatochromic dye, Analytical Chemistry, 72, 963–969, 2000.CrossRefPubMedGoogle Scholar
  17. 17.
    M. Choi, D. Jin, H. Kim, T. J. Kang, S. C. Jeoung, and D. Kim, Fluorescence Anisotropy of Nile Red and Oxazine 725 in an isotropic liquid crystal, Journal of Physical Chemistry B, 101 , 8092–8097, 1997.CrossRefGoogle Scholar
  18. 18.
    K. Matsui and K. Nozawa, Molecular probing for the microenvironment of photonics materials prepared by the Sol–Gel process, Bulletin of the Chemical Society of Japan, 70, 2331–2335, 1997.CrossRefGoogle Scholar
  19. 19.
    M. B. Brown, J. N. Miller and N. J. Seare, An investigation of the use of Nile Red as a long-wavelength fluorescent probe for the study of α1-acid glycoprotein-drug interactions, Journal of Pharmaceutical and Biomedical Analysis, 13, 1011–1017, 1995.CrossRefPubMedGoogle Scholar
  20. 20.
    D. M. Watkins, Y. Sayed-Sweet, J. W. Klimash, N. J. Turro, and D. A. Tomalia, Dendrimers with hydrophobic cores and the formation of supramolecular dendrimer-surfactant assemblies, Langmuir, 13, 3136–3141, 1997.CrossRefGoogle Scholar
  21. 21.
    G. B. Dutt, S. Doraiswamy, and N. Periasamy, Molecular reorientation dynamics of polar dye probes in tertiary-butyl alcohol–water mixtures, Journal of Chemical Physics, 94, 5360–5368,1991.CrossRefGoogle Scholar
  22. 22.
    G. B. Dutt and S. Doraiswamy, Picosecond reorientational dynamics of polar dye probes in binary aqueous mixtures, Journal of Chemical Physics, 96, 2475–2491, 1992.CrossRefGoogle Scholar
  23. 23.
    J. F. Deye, T. A. Berger, and A. G. Anderson, Nile Red as a solvatochromic dye for measuring solvent strength in normal liquids and mixtures of normal liquids with supercritical and near critical fluids, Analytical Chemistry, 62, 615–, 1990.CrossRefGoogle Scholar
  24. 24.
    A. Cser, K. Nagy and L. Biczók, Fluorescence lifetime of Nile Red as a probe for the hydrogen bonding strength with its microenvironment, Chemical Physics Letters, 360, 473–478, 2002.CrossRefGoogle Scholar
  25. 25.
    P. J. G. Coutinho, E. M. S. Castanheira, M. C. Rei and M. E. C. D. Real Oliveira, Nile Red and DCM fluorescence anisotropy studies in C12E7/DPPC mixed systems, Journal of Physical Chemistry B, 106, 12841–12846, 2002.CrossRefGoogle Scholar
  26. 26.
    N. Ghoneim, Photophysics of Nile Red in solution. Steady state spectroscopy, Spectrochimica Acta Part A, 56, 1003–1010, 2000.CrossRefGoogle Scholar
  27. 27.
    A. K. Dutta, K. Kamada and K. Ohta, Spectroscopic studies of Nile Red in organic solvents and polymers, Journal of Photochemistry and Photobiology A: Chemistry, 93, 57–64, 1996.CrossRefGoogle Scholar
  28. 28.
    N. Sarkar, K. Das, D. N. Nath, and K.Bhattacharyya, Twisted charge transfer processes of Nile Red in homogeneous solutions and in faujasite zeolite, Langmuir, 10, 326–329, 1994.CrossRefGoogle Scholar
  29. 29.
    M. M. G. Krishna, Excited-state kinetics of the hydrophobic probe Nile Red in membranes and micelles, Journal of Physical Chemistry A, 103, 3589–3595, 1999.CrossRefGoogle Scholar
  30. 30.
    G. Hungerford, E. M. S. Castanheira, A. L. F. Baptista, P. J. G. Coutinho and M. E. C. D. Real Oliveira, Domain formation in DODAB–cholesterol mixed systems monitored via Nile Red anisotropy, Journal of Fluorescence, 15(6), 835–840, 2005.CrossRefPubMedGoogle Scholar
  31. 31.
    G. Hungerford, A. L.F. Baptista, P. J.G. Coutinho, E. M.S. Castanheira and M. E. C. D. Real Oliveira, Interaction of DODAB with neutral phospholipids and cholesterol studied using fluorescence anisotropy, Journal of Photochemistry and Photobiology A: Chemistry, 181, 99–105, 2006.CrossRefGoogle Scholar
  32. 32.
    R. Gvishi, R. Reisfeld and M. Eisen, Structures, spectra and ground and excited state equilibria of polycations of oxazine-170 , Chemical Physics Letters, 161, 455–460, 1989.CrossRefGoogle Scholar
  33. 33.
    Q-Y. Chen, D-H. Li, Y. Zhao, H-H. Yang, Q-Z. Zhua and J-G. Xu, Interaction of a novel red-region fluorescent probe, Nile Blue, with DNA and its application to nucleic acids assay, The Analyst, 124, 901–907, 1999.CrossRefPubMedGoogle Scholar
  34. 34.
    H. J. van Staveren, O. C. Speelman, M. J. H. Witjes, L. Cincotta, W. M. Star, Fluorescence imaging and spectroscopy of ethyl Nile Blue A in animal models of (pre)malignancies, Photochemistry and Photobiology, 73, 32–38, 2001.CrossRefPubMedGoogle Scholar
  35. 35.
    R. K. Mitra, S. S. Sinha and S. K. Pal, Interactions of Nile Blue with micelles, reverse micelles and a genomic DNA, Journal of Fluorescence, 18, 423–432, 2008.CrossRefPubMedGoogle Scholar
  36. 36.
    K. Das, B. Jain and H. S. Patel, Nile Blue in Triton-X 100/benzene–hexane reverse micelles: a fluorescence spectroscopic study, Spectrochimica Acta Part A, 60, 2059–2064, 2004.CrossRefGoogle Scholar
  37. 37.
    H-W. Gao, Q-S. YE and W-G. Liu, Langmuir aggregation of Nile Blue and Safranine T on sodium dodecylbenzenesulfonate surface and its application to quantitative determination of anionic detergent, Analytical Sciences, 18, 455–459, 2002.CrossRefPubMedGoogle Scholar
  38. 38.
    H. Ju, Y. Ye and Y. Zhu, Interaction between Nile Blue and immobilized single- or double-stranded DNA and its application in electrochemical recognition, Electrochimica Acta, 50, 1361–1367, 2005.CrossRefGoogle Scholar
  39. 39.
    Y-I. Yang, H-Y. Hong, I-S. Lee, D-G. Bai, G-S. Yoo, and J-K. Choi, Detection of DNA using a visible dye, Nile Blue, in electrophoresed gels, Analytical Biochemistry, 280, 322–324, 2000.CrossRefPubMedGoogle Scholar
  40. 40.
    C. Nasr and S. Hotchandani, Excited-state behavior of Nile Blue H-aggregates bound to SiO2 and SnO2 colloids, Chemical Materials, 12, 1529–1535, 2000.CrossRefGoogle Scholar
  41. 41.
    D. A. Steinhurst and J. C. Owrutsky, Second harmonic generation from oxazine dyes at the air/water interface, Journal of Physical Chemistry B, 105, 3062–3072, 2001.CrossRefGoogle Scholar
  42. 42.
    A. Douhal, Photophysics of Nile Blue A in pronton-accepting and electron-donating solvents, Journal of Physical Chemistry, 98, 13131–13137, 1994.CrossRefGoogle Scholar
  43. 43.
    T. Kobayashi, Y. Takagi, H. Kandori, K. Kemnitz and K. Yoshihara, Femtosecond intermolecular electron transfer in diffusionless, weakly polar systems: Nile Blue in aniline and N, N dimethylaniline, Chemical Physics Letters, 180, 416–422, 1991.CrossRefGoogle Scholar
  44. 44.
    A. Grofcsik, M. Kubinyi and W. J. Jones, Intermolecular photoinduced proton transfer in Nile Blue and Oxazine 720, Chemical Physics Letters, 250, 261–265, 1996.CrossRefGoogle Scholar
  45. 45.
    A. Grofcsika, M. Kubinyia, A. Ruzsinszkya, T. Veszprémi and W. J. Jones, Quantum chemical studies on excited state intermolecular proton transfer of oxazine dyes, Journal of Molecular Structure, 555, 15–19, 2000.CrossRefGoogle Scholar
  46. 46.
    R. Sens and K. H. Drexhage, Fluorescence quantum yield of oxazine and carbazine dyes, Journal of Luminescence, 25/25, 709–712, 1981.CrossRefGoogle Scholar
  47. 47.
    V. H. J. Frade, M. Sameiro T. Gonçalves, P. J.G. Coutinho and J. C.V.P. Moura, Journal of Photochemistry and Photobiology A: Chemistry 185, 220–230, 2007.CrossRefGoogle Scholar
  48. 48.
    V. H. J. Frade, P. J. G. Coutinho, J. C. V. P. Moura and M. S. T. Gonçalves, Functionalised benzo[a]phenoxazine dyes as long-wavelength fluorescent probes for amino acids, Tetrahedron, 63, 1654–1663, 2007.CrossRefGoogle Scholar
  49. 49.
    V. H. J. Frade, S. A. Barros, J. C. V. P. Moura, P. J. G. Coutinho and M. S. T. Gonçalves, Synthesis of short and long-wavelength functionalised probes: amino acids’ labelling and photophysical studies, Tetrahedron, 63, 12405–12418, 2007.CrossRefGoogle Scholar
  50. 50.
    P. J. G. Coutinho, C. M. A. Alves and M. S. T. Gonçalves, submitted to publication.Google Scholar
  51. 51.
    K. Meguro, M. Ueno and K. Esumi, Micelle formation in aqueous media, in Nonionic Surfactants: Physical Chemistry, M. J. Schick Ed., Surfactant Science Series, Marcel Dekker: New York, Vol. 23, pp 109–183, 1987.Google Scholar
  52. 52.
    H. Heerklotz, H. Binder, G. Lantzsch, G. Klose, and A. Blume, Lipid/detergent interaction thermodynamics as a function of molecular shape, Journal of Physical Chemistry B, 101, 639–645, 1997.CrossRefGoogle Scholar
  53. 53.
    D. B. Siano and D. E. Metzler, Band shapes of the electronic spectra of complex molecules, Journal of Chemical Physics, 51, 1856–1861, 1969.CrossRefGoogle Scholar
  54. 54.
    J. Shobha, V. Srinivas, and D. Balasubramanian, Differential modes of incorporation of probe molecules in micelles and in bilayer vesicles, Journal of Physical Chemistry, 93, 17–20, 1989.CrossRefGoogle Scholar
  55. 55.
    T. Inoue, Interaction of Surfactants with Phospholipid Vesicles, in Vesicles, M. Rosoff Ed., Surfactant Science Series, Marcel Dekker: New York, Vol. 62, pp. 151–195, 1996.Google Scholar
  56. 56.
    H. M. McConnell and A. Radhakrishnan, Condensed complexes of cholesterol and phospholipids, Biochimica Biophysica Acta - Biomembranes, 1610, 159–173, 2003.CrossRefGoogle Scholar
  57. 57.
    R. P. Masona, T. N. Tulenkob and R. F. Jacob, Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology, Biochimica Biophysica Acta - Biomembranes, 1610, 198–207, 2003.CrossRefGoogle Scholar
  58. 58.
    S. Koronkiewicz and S. Kalinowski, Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies, Biochimica Biophysica Acta – Biomembranes, 1661, 196–203, 2004.CrossRefGoogle Scholar
  59. 59.
    Ni. Marmé, G. Habl and J-P. Knemeyer, Aggregation behavior of the red-absorbing oxazine derivative MR 121: A new method for determination of pure dimer spectra, Chemical Physics Letters, 408, 221–225, 2005.CrossRefGoogle Scholar
  60. 60.
    M. J. Kamlet, J. L. M. Abboud, M. H. Abraham, and R. W. Taft, Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation, Journal of Organic Chemistry, 48, 2877–2887, 1983.CrossRefGoogle Scholar
  61. 61.
    R. Sens and K. H. Drexhage, Fluorescence quantum yield of oxazine and carbazine laser dyes, Journal of Luminescence, 24, 709–712, 1981.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Paulo J.G. Coutinho
    • 1
  1. 1.Centro de Física, Universidade do MinhoBragaPortugal

Personalised recommendations