Skip to main content

Exploring the Electrostatic Landscape of Proteins with Tryptophan Fluorescence

  • Chapter
Reviews in Fluorescence 2007

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2007))

Abstract

The objective of this review is to present information gained during the last decade that has transformed tryptophan (Trp) into a well-understood fluorescent probe—a probe with no more complications than most non-intrinsic probes, which are usually large dyes with incompletely explored complexity. An overview highlights and summarizes key advancements during the last decade that have increased our understanding of Trp and its fluorescence in proteins. This is followed by sections devoted to (1) the understanding of quenching (mostly caused by electron transfer for which there has been considerable progress), (2) the prediction of steady state fluorescence wavelengths in proteins, (3) nonexponential decay (which remains challenging), and (4) a section that catalogs a number of fundamental experiments and computations on the isolated Trp chromophore that have provided much of the infrastructure for the preceding sections. There is continual emphasis in this chapter on the simple—yet accurate—concept that the extremes of electrostatic fields in proteins are mirrored in the variability and sensitivity of Trp fluorescence quantum yields, lifetimes, and wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. B. A. Ross, W. R. Laws, and M. A. Shea, Protein Structures: Methods in Protein Structure and Structure Analysis, V. Uversky and Permyakov, E. A., Editors. Nova Science Publishers, Inc., New York, 1–18 (2007)

    Google Scholar 

  2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy., 3rd Ed., Springer (2006)

    Google Scholar 

  3. A. S. Ladokhin, S. Jayasinghe, and S. H. White, How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal.Biochem. 285, 235–245 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. A. S. Ladokhin, Encyclopedia of Analytical Chemistry, R. A. Myers, Editor. John Wiley and Sons, Ltd., Chichester, 5762–5799 (2000)

    Google Scholar 

  5. M. R. Eftink, Fluorescence techniques for studying protein structure. Methods Biochem. Anal. 35, 127–205 (1991)

    Article  CAS  PubMed  Google Scholar 

  6. C. A. Royer, Probing protein folding and conformational transitions with fluorescence. Chemical Reviews 106(5), 1769–1784 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. J. Kubelka, W. A. Eaton, and J. Hofrichter, Experimental tests of villin subdomain folding simulations. J. Mol. Biol. 329(4), 625–630 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. R. Godoy-Ruiz, E. R. Henry, J. Kubelka, J. Hofrichter, V. Munoz, J. M. Sanchez-Ruiz, and W. A. Eaton, Estimating free-energy barrier heights for an ultrafast folding protein from calorimetric and kinetic data. J. Phys. Chem. B 112(19), 5938–5949 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. D. L. Ensign, P. M. Kasson, and V. S. Pande, Heterogeneity even at the speed limit of folding: Large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. J. Mol. Biol. 374(3), 806–816 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. T. Kimura, J. C. Lee, H. B. Gray, and J. R. Winkler, Site-specific collapse dynamics guide the formation of the cytochrome c ' four-helix bundle. Proc. Natl. Acad. Sci. U.S.A. 104(1), 117–122 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. J. E. Kim, G. Arjara, J. H. Richards, H. B. Gray, and J. R. Winkler, Probing folded and unfolded states of outer membrane protein A with steady-state and time-resolved tryptophan fluorescence. J. Phys. Chem. B 110(35), 17656–17662 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. A. Warshel, Computer modeling of chemical reactions in enzymes and solutions, Ed., Wiley-Interscience, New York, NY (1991)

    Google Scholar 

  13. P. R. Callis, 1La and 1Lb transitions of tryptophan: Applications of theory and experimental observations to fluorescence of proteins. Meth. Enzym. 278, 113–150 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. L. S. Slater and P. R. Callis, Molecular orbital theory of the 1La and 1Lb states of indole. 2. An ab initio study. J. Phys. Chem. 99, 8572–8581 (1995)

    Article  CAS  Google Scholar 

  15. P. R. Callis, Molecular orbital theory of the 1La and 1Lb states of indole. J. Chem. Phys. 95, 4230–4240 (1991)

    Article  CAS  Google Scholar 

  16. M. R. Eftink, L. A. Selvidge, P. R. Callis, and A. A. Rehms, Photophysics of indole derivatives: Experimental resolution of La and Lb transitions and comparison with theory. J. Phys. Chem. 94(9), 3469–3479 (1990)

    Article  CAS  Google Scholar 

  17. P. R. Callis, Transition density topology of the La and Lb states of indoles and purines. Int. J. Quantum. Chem. S18, 579–588 (1984)

    Article  Google Scholar 

  18. K. W. Short and P. R. Callis, Evidence of pure 1Lb fluorescence from redshifted indole-polar solvent complexes in a supersonic jet. J. Chem. Phys. 108, 10189–10196 (1998)

    Article  CAS  Google Scholar 

  19. K. W. Short and P. R. Callis, Studies of jet-cooled 3-methylindole-polar solvent complexes: Identification of 1La fluorescence. J. Chem. Phys. 113, 5235–5244 (2000)

    Article  CAS  Google Scholar 

  20. K. W. Short and P. R. Callis, One- and two-photon spectra of jet-cooled 2,3-dimethylindole: 1Lb and 1La assignments. Chem. Phys. 283(1–2), 269–278 (2002)

    Article  CAS  Google Scholar 

  21. B. J. Fender, D. M. Sammeth, and P. R. Callis, Site selective photoselection study of indole in argon matrix: Location of the 1La origin. Chem. Phys. Lett. 239, 31–37 (1995)

    Article  CAS  Google Scholar 

  22. B. J. Fender and P. R. Callis, 1La origin Locations of methylindoles in argon matrices. Chem. Phys. Lett. 262, 343–348 (1996)

    Article  CAS  Google Scholar 

  23. J. Broos, K. Tveen-Jensen, E. de Waal, B. H. Hesp, J. B. Jackson, G. W. Canters, and P. R. Callis, The emitting state of tryptophan in proteins with highly blue-shifted fluorescence. Angewandte Chemie-International Edition 46(27), 5137–5139 (2007)

    Article  CAS  Google Scholar 

  24. T. J. Jensen, G. Strambini, G. Gonnelli, J. Broos, and J. B. Jackson, Mutations in transhydrogenase change the fluorescence emission state of trp-72 from 1La to 1Lb. Biophys. J, 95, 3419–3428 (2008)

    Google Scholar 

  25. J. T. Vivian and P. R. Callis, Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 80 2093–2109 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. T. P. Li, A. A. P. Hassanali, Y. T. Kao, D. P. Zhong, and S. J. Singer, Hydration dynamics and time scales of coupled water-protein fluctuations. J. Am. Chem. Soc. 129(11), 3376–3382 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. P. R. Callis and T. Liu, Quantitative prediction of fluorescence quantum yields for tryptophan in proteins. J. Phys. Chem. B 108, 4248–4259 (2004)

    Article  CAS  Google Scholar 

  28. P. R. Callis and J. T. Vivian, Understanding the variable fluorescence quantum yield of tryptophan in proteins using QM-MM simulations. Quenching by charge transfer to the peptide backbone. Chem. Phys. Lett. 369, 409–414 (2003)

    Article  CAS  Google Scholar 

  29. J. J. Chen, S. L. Flaugh, P. R. Callis, and J. King, Mechanism of the highly efficient quenching of tryptophan fluorescence in human gamma D-crystallin. Biochemistry 45(38), 11552–11563 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. J. H. Xu, D. Toptygin, K. J. Graver, R. A. Albertini, R. S. Savtchenko, N. D. Meadow, S. Roseman, P. R. Callis, L. Brand, and J. R. Knutson, Ultrafast fluorescence dynamics of tryptophan in the proteins monellin and IIA(Glc). J. Am. Chem. Soc. 128(4), 1214–1221 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. L. C. Kurz, B. Fite, J. Jean, J. Park, T. Erpelding, and P. Callis, Photophysics of tryptophan fluorescence: Link with the catalytic strategy of the citrate synthase from Thermoplasma acidophilum. Biochemistry 44(5), 1394–1413 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. P. R. Callis, A. Petrenko, P. L. Muino, and J. R. Tusell, Ab initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer. J. Phys. Chem. B 111(35), 10335–10339 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. J.-P. Privat, P. Wahl, and J.-C. Auchet, Rates of deactivation processes of indole derivatives in water-organic solvent mixtures—Application to tryptophyl fluorescence of proteins. Biophys. Chem. 9, 223–233 (1979)

    Article  CAS  PubMed  Google Scholar 

  34. J. W. Petrich, M. C. Chang, D. B. McDonald, and G. R. Fleming, On the origin of nonexponential fluorescence decay in tryptophan and its derivatives. J. Am. Chem. Soc. 105, 3824–3832 (1983)

    Article  CAS  Google Scholar 

  35. T. E. S. Dahms, K. J. Willis, and A. G. Szabo, Conformational heterogeneity of tryptophan in a protein crystal. J. Am. Chem. Soc. 117, 2321–2326 (1995)

    Article  CAS  Google Scholar 

  36. M. Hellings, M. DeMaeyer, S. Verheyden, Q. Hao, E. J. M. VanDamme, W. J. Peumans, and Y. Engelborghs, The dead-end elimination method, tryptophan rotamers, and fluorescence lifetimes. Biophys. J. 85, 1894–1902 (2003)

    Article  CAS  PubMed  Google Scholar 

  37. T. Q. Liu, P. R. Callis, B. H. Hesp, M. de Groot, W. J. Buma, and J. Broos, Ionization potentials of fluoroindoles and the origin of nonexponential tryptophan fluorescence decay in proteins. J. Am. Chem. Soc. 127(11), 4104–4113 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. P. Abbyad, X. H. Shi, W. Childs, T. B. McAnaney, B. E. Cohen, and S. G. Boxer, Measurement of solvation responses at multiple sites in a globular protein. J. Phys. Chem. B 111(28), 8269–8276 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. S. R. Meech, A. Lee, and D. Phillips, On the nature of the fluorescent state of methylated indole derivatives. Chem. Phys. 80 317–328 (1983)

    Article  CAS  Google Scholar 

  40. 3MI and NATA are useful model compounds. NATA has two amides connected to the indole ring just as in the protein, and does not have the ammonium and carboxylate characteristic of the free amino acid Trp at pH 7. The amides are separated from the system of the indole ring by two saturated carbons. Therefore, 3MI has very nearly the same electronic properties, without the possibility of electron transfer to the amides.

    Google Scholar 

  41. R. W. Cowgill, Fluorescence and the structure of proteins. I. Effects of substituents on the fluorescence of indole and phenol compounds. Arch. Biochm. Biophys. 100, 36–44 (1963)

    Article  CAS  Google Scholar 

  42. J. Feitelson, Environmental effects on the fluorescence of tryptophan and other indole derivatives. Israel J. Chem. 8, 241–252 (1970)

    CAS  Google Scholar 

  43. Y. Chen and M. D. Barkley, Toward understanding tryptophan fluorescence in proteins. Biochemistry 37, 9976–9982 (1998)

    Article  CAS  PubMed  Google Scholar 

  44. Y. Chen, B. Liu, H.-T. Yu, and M. D. Barkley, The peptide bond quenches indole fluorescence. J. Am. Chem. Soc. 118, 9271–9278 (1996)

    Article  CAS  Google Scholar 

  45. R. W. Ricci and J. M. Nesta, Inter- and intramolecular quenching of indole fluorescence by carbonyl compounds. J. Phys. Chem. 80, 974–980 (1976)

    Article  CAS  Google Scholar 

  46. H. Shizuka, M. Serizawa, T. Shimo, I. Saito, and T. Matsuura, Fluorescence quenching mechanism of tryptophan. Remarkably efficient internal proton-induced quenching and charge-transfer quenching. J. Am. chem. soc. 110, 1930–1934 (1988)

    Google Scholar 

  47. M. R. Eftink, Y. Jia, D. Hu, and C. A. Ghiron, Fluorescence studies with tryptophan analogues: Excited state interactions involving the side chain amino group. J. Phys. Chem. 99, 5713–5723 (1995)

    Article  CAS  Google Scholar 

  48. C. P. Pan, P. R. Callis, and M. D. Barkley, Dependence of tryptophan emission wavelength on conformation in cyclic hexapeptides. J. Phys. Chem. B 110(13), 7009–7016 (2006)

    Article  CAS  PubMed  Google Scholar 

  49. P. D. Adams, Y. Chen, K. Ma, M. G. Zagorski, F. D. Sonnichsen, M. L. McLaughlin, and M. D. Barkley, Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J. Am. Chem. Soc. 124, 9278–9286 (2002)

    Article  CAS  PubMed  Google Scholar 

  50. A. Sillen, J. Hennecke, D. Roethlisberger, R. Glockshuber, and Y. Engelborghs, Fluorescence quenching in the DsbA protein from Escherichia coli: The complete picture of the excited-state energy pathway and evidence for the reshuffling dynamics of the microstates of tryptophan. Proteins Struct Funct Genet 37, 253–263 (1999)

    Article  CAS  PubMed  Google Scholar 

  51. W. H. Qiu, Y. T. Kao, L. Y. Zhang, Y. Yang, L. J. Wang, W. E. Stites, D. P. Zhong, and A. H. Zewail, Protein surface hydration mapped by site-specific mutations. Proc. Natl. Acad. Sci. U.S.A. 103(38), 13979–13984 (2006)

    Article  CAS  PubMed  Google Scholar 

  52. R. Vos and Y. Engelborghs, A fluorescence study of tryptophan-histidine interactions in the peptide anantin and in solution. Photochem. Photobiol. 60, 24–32 (1994)

    Article  CAS  PubMed  Google Scholar 

  53. K. Willaert, R. Loewenthal, J. Sancho, M. Froeyen, A. Fersht, and Y. Engelborghs, Determination of the excited-state lifetimes of the tryptophan residues in barnase, via multifrequency phase fluorometry of tryptophan mutants. Biochemistry 31, 711–716 (1992)

    Article  CAS  PubMed  Google Scholar 

  54. D. L. Harris and B. S. Hudson, Fluorescence and molecular dynamics study of the internal motion of the buried tryptophan in bacteriophage T4 lysozyme: effects of temperature and alteration of nonbonded networks. Chem. Phys. 158, 353–382 (1991)

    Article  CAS  Google Scholar 

  55. C. D. Borsarelli, S. G. Bertolotti, and C. M. Previtali, Exciplex-type behavior and partition of 3-substituted indole derivatives in reverse micelles made with benzylhexadecyldimethylammonium chloride, water and benzene. Photochem. Photobiol. 73(2), 97–104 (2001)

    Article  CAS  PubMed  Google Scholar 

  56. C. Rivarola, S. G. Bertolotti, C. D. Borsarelli, J. J. Cosa, C. M. Previtali, and M. G. Neumann, Hydrogen bonding and charge transfer interactions in exciplexes formed by excited indole and monosubstituted benzenes in cyclohexane. Chem. Phys. Lett. 262(1–2), 131–136 (1996)

    Article  CAS  Google Scholar 

  57. V. Nanda, S. M. Liang, and L. Brand, Hydrophobic clustering in acid-denatured IL-2 and fluorescence of a Trp NH–pi H-bond. Biochem. Biophys. Res. Commun. 279, 770–778 (2000)

    Article  CAS  PubMed  Google Scholar 

  58. V. Nanda and L. Brand, Aromatic interactions in homeodomains contribute to the low quantum yield of a conserved, buried tryptophan. Proteins 40, 112–125 (2000)

    Article  CAS  PubMed  Google Scholar 

  59. V. Subramaniam, T. M. Jovin, and R. V. Rivera-Pomar, Aromatic amino acids are critical for stability of the bicoid homeodomain. J. Biol. Chem. 276, 21506–21511 (2001)

    Article  CAS  PubMed  Google Scholar 

  60. T. Liu and P. R. Callis, Quantitative prediction of tryptophan fluorescence quenching in proteins, III: Quenching by disulfide, aromatics, and acrylamide. Biophys. J. 88(1), 161A–162A (2005)

    Article  CAS  Google Scholar 

  61. T. P. Treynor and S. G. Boxer, Probing excited-state electron transfer by resonance stark spectroscopy: 3. Theoretical foundations and practical applications. J. Phys. Chem. B 108(35), 13513–13522 (2004)

    Article  CAS  Google Scholar 

  62. A. L. Sobolewski, W. Domcke, C. Dedonder-Lardeux, and C. Jouvet, Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: A new paradigm for nonradiative decay in aromatic biomolecules. Phys. Chem. Chem. Phys. 2002, 1093–1100 (2002)

    Article  CAS  Google Scholar 

  63. A. Sobolewski and W. Domcke, Photoinduced charge separation in indole-water clusters. Chem. Phys. Lett. 329, 130–137 (2000)

    Article  CAS  Google Scholar 

  64. A. L. Sobolewski and W. Domcke, Ab initio investigations on the photophysics of indole. Chem. Phys. Lett. 315(3–4), 293–298 (1999)

    Article  CAS  Google Scholar 

  65. C. donder-Lardeux, C. Jouvet, S. Perun, and A. L. Sobolewski, External electric field effect on the lowest excited states of indole: Ab initio and molecular dynamics study. Phys. Chem. Chem. Phys. 5(22), 5118–5126 (2003)

    Article  CAS  Google Scholar 

  66. P. L. Muiño and P. R. Callis, Solvent effects on the fluorescence quenching of tryptophan by amides via electron transfer. experimental and computational studies. J. Phys. Chem. B 113, 2572–2577 (2008)

    Google Scholar 

  67. R. A. Marcus and N. Sutin, Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265–322 (1985)

    CAS  Google Scholar 

  68. R. A. Marcus, On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1955)

    Article  Google Scholar 

  69. M. Tachiya, Generalization of the Marcus equation for the electron-transfer rate. J. Phys. Chem. 97, 5911–5916 (1993)

    Article  CAS  Google Scholar 

  70. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Avala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98 (Revision A.11.3) (2002)

    Google Scholar 

  71. J. Ridley and M. Zerner, Intermediate Neglect of Differential Overlap (INDO) technique for spectroscopy: Pyrrole and the azines. Theor. Chim. Acta(Berl) 32, 111–134 (1973)

    Article  CAS  Google Scholar 

  72. M. A. Thompson and M. C. Zerner, A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Am. Chem. Soc. 113, 8210–8215 (1991)

    Article  CAS  Google Scholar 

  73. A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus, All atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  CAS  Google Scholar 

  74. K. Andersson, P.-Å. Malmqvist, and B. O. Roos, 2nd-order perturbation-theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96(2), 1218–1226 (1992)

    Article  CAS  Google Scholar 

  75. K. Andersson, M. Barysz, A. Bernhardsson, M. R. A. Blomberg, D. L. Cooper, M. P. Fülscher, C. de Graaf, B. A. Hess, G. Karlström, R. Lindh, P.-Å. Malmqvist, T. Nakajima, P. Neogrády, J. Olsen, B. O. Roos, B. Schimmelpfennig, M. Schütz, L. Seijo, L. Serrano-Andrés, P. E. M. Siegbahn, J. Stålring, T. Thorsteinsson, V. Veryazov, and P.-O. Widmark, MOLCAS5.4, Lund University, Sweden (2002)

    Google Scholar 

  76. H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003)

    Article  CAS  PubMed  Google Scholar 

  77. J. T. Hynes, Outer-sphere electron-transfer reactions and frequency-dependent friction. J. Phys. Chem. 90(16), 3701–3706 (1986)

    Article  CAS  Google Scholar 

  78. M. M. Toutounji and M. A. Ratner, Testing the condon approximation for electron transfer via the Mulliken-Hush model. J. Phys. Chem. A 104(37), 8566–8569 (2000)

    Article  CAS  Google Scholar 

  79. L. Y. Zhang, R. A. Friesner, and R. B. Murphy, Ab initio quantum chemical calculation of electron transfer matrix elements for large molecules. J. Chem. Phys. 107(2), 450–459 (1997)

    Article  CAS  Google Scholar 

  80. M. D. Newton, Quantum chemical probes of electron-transfer kinetics – the nature of donor-acceptor interactions. Chemical Reviews 91(5), 767–792 (1991)

    Article  CAS  Google Scholar 

  81. G. Ashkenazi, R. Kosloff, and M. A. Ratner, Photoexcited electron transfer: Short-time dynamics and turnover control by dephasing, relaxation, and mixing. J. Am. Chem. Soc. 121(14), 3386–3395 (1999)

    Article  CAS  Google Scholar 

  82. R. Kosloff and M. A. Ratner, Rate constant turnovers: Energy spacings and mixings. J. Phys. Chem. B 106(33), 8479–8483 (2002)

    Article  CAS  Google Scholar 

  83. Qiu, W, T. Li, L. Zhang, Y. Yang, Y.-T. Kao, L. Wang, and D. Zhong, Ultrafast quenching of tryptophan fluorescence in proteins:Interresidue and intrahelical electron transfer. Chem. Phys. 350, 154–164 (2008)

    Article  CAS  Google Scholar 

  84. M. Sobczyk, W. Anusiewicz, J. Berdys-Kochanska, A. Sawicka, P. Skurski, and J. Simons, Coulomb-assisted dissociative electron attachment: Application to a model peptide. J. Phys. Chem. A 109(1), 250–258 (2005)

    Article  CAS  PubMed  Google Scholar 

  85. J. Peon, S. K. Pal, and A. H. Zewail, Hydration at the surface of the protein Monellin: Dynamics with femtosecond resolution. Proc. Natl. Acad. Sci. U.S.A. 99(17), 10964–10969 (2002)

    Article  CAS  PubMed  Google Scholar 

  86. D. Toptygin, R. S. Savtchenko, N. D. Meadow, and L. Brand, Homogeneous spectrally- and time-resolved fluorescence emission from single-tryptophan mutants of IIAGlc. J. Chem. Phys. 105, 2043–2055. (2001)

    CAS  Google Scholar 

  87. B. Zagrovic, C. D. Snow, S. Khaliq, M. R. Shirts, and V. S. Pande, Native-like mean structure in the unfolded ensemble of small proteins. J. Mol. Biol. 323(1), 153–164 (2002)

    Article  CAS  PubMed  Google Scholar 

  88. J. Kubelka, J. Hofrichter, and W. A. Eaton, The protein folding 'speed limit'. Curr. Opin. Struct. Biol. 14(1), 76–88 (2004)

    Article  CAS  PubMed  Google Scholar 

  89. T. K. Chiu, J. Kubelka, R. Herbst-Irmer, W. A. Eaton, J. Hofrichter, and D. R. Davies, High-resolution x-ray crystal structures of the villin headpiece subdomain, an ultrafast folding protein. Proc. Natl. Acad. Sci. U.S.A. 102(21), 7517–7522 (2005)

    Article  CAS  PubMed  Google Scholar 

  90. K. De-Beuckeleer, G. Volckaert, and Y. Engelborghs, Time resolved fluorescence and phosphorescence properties of the individual tryptophan residues of barnase: Evidence for protein-protein interactions. Proteins-.July 36, 42–53 (1999)

    Article  CAS  Google Scholar 

  91. K. Willaert and Y. Engelborghs, The quenching of tryptophan fluorescence by protonated and unprotonated imidazole. Eur. Biophys. J. 20, 177–182 (1991)

    Article  CAS  Google Scholar 

  92. M. Van Gilst and B. S. Hudson, Histidine-tryptophan interactions in T4 lysozyme: 'Anomalous' pH dependence of fluorescence. Biophys. Chem. 63, 17–25 (1996)

    Article  PubMed  Google Scholar 

  93. R. Tusell and P. R. Callis, Ab initio prediction and mechanism of the tryptophan fluorescence quantum yield for the Villin Headpiece Mutant N27H. Biophys. J. 329A (2008)

    Google Scholar 

  94. B. Honig, U. Dinur, K. Nakanishi, V. Balogh-Nair, M. A. Gawinowicz, M. Arnaboldi, and M. G. Motto, An external point-charge model for wavelength regulation in visual pigments. J. Am. Chem. Soc. 101 7084–7086 (1979)

    Article  CAS  Google Scholar 

  95. B. E. Kohler and J. C. Woehl, Measuring internal fields with atomic resolution. J. Chem. Phys. 102, 7773–7781 (1995)

    Article  CAS  Google Scholar 

  96. R. Varadarajan, D. G. Lambright, and S. G. Boxer, Electrostatic interactions in wild-type mutant recominant human myoglobins. Biochemistry 28 3771–3781 (1989)

    Article  CAS  PubMed  Google Scholar 

  97. D. Sitkoff, D. J. Lockhart, K. A. Sharp, and B. Honig, Calculation of electrostatic effects at the amino terminus of an alpha helix. Biophys. J. 67 2251–2260 (1994)

    Article  CAS  PubMed  Google Scholar 

  98. D. J. Lockhart and P. S. Kim, Electrostatic screening of charge and dipole interactions with the helix backbone. Science 260, 198–202 (1993)

    Article  CAS  PubMed  Google Scholar 

  99. D. J. Lockhart and P. S. Kim, Internal stark effect measurement of the electric field at the amino terminus of an alpha helix. Science 257, 947–951 (1992)

    Article  CAS  PubMed  Google Scholar 

  100. P. R. Callis and B. K. Burgess, Tryptophan fluorescence shifts in proteins from hybrid simulations: An electrostatic approach. J. Phys. Chem. B 101(46), 9429–9432 (1997)

    Article  CAS  Google Scholar 

  101. J. Lakowicz, On spectral relaxation in proteins. Photochem. Photobiol. 72, 421–437 (2000)

    Article  CAS  PubMed  Google Scholar 

  102. Z. Bajzer and F. G. Prendergast, A model for multiexponential tryptophan fluorescence intensity decay in proteins. Biophys. J. 65, 2313–2323 (1993)

    Article  CAS  PubMed  Google Scholar 

  103. J. Wlodarczyk and B. Kierdaszuk, Interpretation of fluorescence decays using a power-like model. Biophys. J. 85(1), 589–598 (2003)

    Article  CAS  PubMed  Google Scholar 

  104. B. S. Hudson, J. M. Huston, and G. Soto-Campos, A reversible “dark state" mechanism for complexity of the fluorescence of tryptophan in proteins. J. Phys. Chem. A 103, 2227–2234 (1999)

    Article  CAS  Google Scholar 

  105. A. Ababou and E. Bombarda, On the involvement of electron transfer reactions in the fluorescence decay kinetics heterogeneity of proteins. Protein Sci. 10, 2102–2113 (2001)

    Article  CAS  PubMed  Google Scholar 

  106. J. J. Prompers, C. W. Hilbers, and H. A. M. Pepermans, Tryptophan mediated photoreduction of disulfide bond causes unusual fluorescence behaviour of Fusarium solani pisi cutinase. FEBS Letters 456 409–416 (1999)

    Article  CAS  PubMed  Google Scholar 

  107. P. C. M. Weisenborn, H. Meder, M. R. Egmond, T. J. W. G. Visser, and A. van Hoek, Photophysics of the single tryptophan residue in Fusarium solani cutinase: Evidence for the occurrence of conformational substates with unusual fluorescence behaviour. Biophys. Chem. 58, 281–288 (1996)

    Article  CAS  PubMed  Google Scholar 

  108. J. Broos, F. Maddalena, and B. H. Hesp, In vivo synthesized proteins with monoexponential fluorescence decay kinetics. J. Am. Chem. Soc. 126, 22–23 (2004)

    Article  CAS  PubMed  Google Scholar 

  109. G. R. Winkler, S. B. Harkins, J. C. Lee, and H. B. Gray, alpha-synuclein structures probed by 5-fluorotryptophan fluorescence and F-19 NMR spectroscopy. J. Phys. Chem. B 110(13), 7058–7061 (2006)

    Article  CAS  PubMed  Google Scholar 

  110. D. Toptygin, A. M. Gronenborn, and L. Brand, Nanosecond relaxation dynamics of protein GB1 identified by the time-dependent red shift in the fluorescence of tryptophan and 5-fluorotryptophan. J. Phys. Chem. B 110(51), 26292–26302 (2006)

    Article  CAS  PubMed  Google Scholar 

  111. A. V. Smirnov, D. S. English, R. L. Rich, J. Lane, L. Teyton, A. W. Schwabacher, S. Luo, R. W. Thornburg, and J. W. Petrich, Photophysics and biological applications of 7-azaindole and its analogs. J. Phys. Chem. B 101(15), 2758–2769 (1997)

    Article  CAS  Google Scholar 

  112. X. H. Shen and J. R. Knutson, Subpicosecond fluorescence spectra of tryptophan in water. J. Phys. Chem. B 105(26), 6260–6265 (2001)

    Article  CAS  Google Scholar 

  113. S. K. Pal, J. Peon, and A. H. Zewail, Biological water at the protein surface: Dynamical solvation probed directly with femtosecond resolution. Proc. Natl. Acad. Sci. U.S.A. 99(4), 1763–1768 (2002)

    Article  CAS  PubMed  Google Scholar 

  114. P. R. Callis and T. Q. Liu, Short range photoinduced electron transfer in proteins: QM-MM simulations of tryptophan and flavin fluorescence quenching in proteins. Chem. Phys. 326(1), 230–239 (2006)

    Article  CAS  Google Scholar 

  115. A. J. Ruggiero, D. C. Todd, and G. R. Fleming, Subpicosecond fluorescence anisotropy studies of tryptophan in water. J. Am. Chem. Soc. 112(3), 1003–1014 (1990)

    Article  CAS  Google Scholar 

  116. J. E. Hansen, S. J. Rosenthal, and G. R. Fleming, Subpicosecond fluorescence depolarization studies of tryptophan and tryptophanyl residues of proteins. J. Phys. Chem. 96(7), 3034–3040 (1992)

    Article  CAS  Google Scholar 

  117. O. F. A. Larsen, I. H. M. van Stokkum, A. Pandit, R. van Grondelle, and H. van Amerongen, Ultrafast polarized fluorescence measurements on tryptophan and a tryptophan-containing peptide. J. Phys. Chem. B 107(13), 3080–3085 (2003)

    Article  CAS  Google Scholar 

  118. W. Y. Lu, J. Kim, W. H. Qiu, and D. P. Zhong, Femtosecond studies of tryptophan solvation: Correlation function and water dynamics at lipid surfaces. Chem. Phys. Lett. 388(1–3), 120–126 (2004)

    Article  CAS  Google Scholar 

  119. L. Y. Zhang, L. J. Wang, Y. T. Kao, W. H. Qiu, Y. Yang, O. Okobiah, and D. P. Zhong, Mapping hydration dynamics around a protein surface. Proc. Natl. Acad. Sci. U.S.A. 104(47), 18461–18466 (2007)

    Article  CAS  PubMed  Google Scholar 

  120. S. K. Pal, J. Peon, B. Bagchi, and A. H. Zewail, Biological water: Femtosecond dynamics of macromolecular hydration. J. Phys. Chem. B 106(48), 12376–12395 (2002)

    Article  CAS  Google Scholar 

  121. L. Nilsson and B. Halle, Molecular origin of time-dependent fluorescence shifts in proteins. Proc. Natl. Acad. Sci. U.S.A. 102(39), 13867–13872 (2005)

    Article  CAS  PubMed  Google Scholar 

  122. X. H. Shen and J. R. Knutson, Femtosecond internal conversion and reorientation of 5-methoxyindole in hexadecane. Chem. Phys. Lett. 339(3–4), 191–196 (2001)

    Article  CAS  Google Scholar 

  123. M. Vincent, B. de Foresta, and J. Gallay, Nanosecond dynamics of a mimicked membrane-water interface observed by time-resolved stokes shift of LAURDAN. Biophys. J. 88(6), 4337–4350 (2005)

    Article  CAS  PubMed  Google Scholar 

  124. A. S. R. Koti and N. Periasamy, Application of time resolved area normalized emission spectroscopy to multicomponent systems. J. Chem. Phys. 115(15), 7094–7099 (2001)

    Article  CAS  Google Scholar 

  125. A. S. R. Koti, M. M. G. Krishna, and N. Periasamy, Time-resolved area-normalized emission spectroscopy (TRANES): A novel method for confirming emission from two excited states. J. Phys. Chem. A 105(10), 1767–1771 (2001)

    Article  CAS  Google Scholar 

  126. R. W. Alston, M. Lasagna, G. R. Grimsley, J. M. Scholtz, G. D. Reinhart, and C. N. Pace, Peptide sequence and conformation strongly influence tryptophan fluorescence. Biophys. J. 94(6), 2280–2287 (2008)

    Article  CAS  PubMed  Google Scholar 

  127. R. W. Alston, M. Lasagna, G. R. Grimsley, J. M. Scholtz, G. D. Reinhart, and C. N. Pace, Tryptophan fluorescence reveals the presence of long-range interactions in the denatured state of ribonuclease Sa. Biophys. J. 94(6), 2288–2296 (2008)

    Article  CAS  PubMed  Google Scholar 

  128. R. Swaminathan, G. Krishnamoorthy, and N. Periasamy, Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state. Biophys. J. 67(5), 2013–2023 (1994)

    Article  CAS  PubMed  Google Scholar 

  129. K. J. Willis, A. G. Szabo, J. Drew, M. Zuker, and J. M. Ridgeway, Resolution of heterogeneous fluorescence into component decay-associated excitation-spectra – application to subtilisins. Biophys. J. 57(2), 183–189 (1990)

    Article  CAS  PubMed  Google Scholar 

  130. K. J. Willis and A. G. Szabo, Resolution of tyrosyl and tryptophyl fluorescence emission from subtilisins. Biochemistry 28(11), 4902–4908 (1989)

    Article  CAS  Google Scholar 

  131. J.A. Bombasaro, A.M. Rodriguez, and R.D. Enviz, Comprehensive conformational analysis of N-acetyl-L-tryptophone-N-methylamide. An abinitio and DFT study. Theochem 724, 173–184 (2005)

    Google Scholar 

  132. E. H. Strickland, J. Horwitz, and C. Billups, Near-ultraviolet absorption bands of tryptophan. Studies using indole and 3-methylindole as models. Biochemistry 9, 4914–4920 (1970)

    Article  CAS  PubMed  Google Scholar 

  133. D. M. Sammeth, S. S. Siewert, L. H. Spangler, and P. R. Callis, 1La transitions of jet-cooled 3-methylindole. Chem. Phys. Lett. 193, 532–538 (1992)

    Article  CAS  Google Scholar 

  134. L. S. Slater and P. R. Callis, Molecular-orbital theory of the 1La and 1Lb states of indole .2. An ab-initio study. J. Phys. Chem. 99, 8572–8581 (1995)

    Article  CAS  Google Scholar 

  135. P. R. Callis, J. T. Vivian, and L. S. Slater, Ab initio calculations of vibronic spectra for indole. Chem. Phys. Lett. 244, 53–58 (1995)

    Article  CAS  Google Scholar 

  136. B. J. Fender, K. W. Short, D. K. Hahn, and P. R. Callis, Vibrational assignments for indole with the aid of ultrasharp phosphorescence spectra. Int. J. Quantum Chem. 72, 347–356 (1999)

    Google Scholar 

  137. J. T. Vivian and P. R. Callis, Vibronic band shapes for indole from scaled bond order changes. Chem. Phys. Lett. 229(1–2), 153–160 (1994)

    Article  CAS  Google Scholar 

  138. D. R. Demmer, G. W. Leach, and S. C. Wallace, 1La-1Lb coupling in the excited state of 3-methylindole and its polar clusters. J. Phys. Chem. 98, 12834–12843 (1994)

    Article  CAS  Google Scholar 

  139. J. W. Longworth, Excited state interactions in macromolecules. Photochem. Photobiol. 7, 587–596 (1968)

    Article  CAS  Google Scholar 

  140. T. W. Scott, B. F. Campbell, R. L. Cone, and J. M. Friedman, Line narrowing and site selectivity in tryptophan fluorescence from proteins and glasses: Cryogenic studies of conformational disorder and dynamics. Chem. Phys. 131, 63–79 (1989)

    Article  CAS  Google Scholar 

  141. D. K. Hahn and P. R. Callis, The lowest triplet state of indole: An ab initio study. J. Phys. Chem. 101, 2686–2691 (1997)

    CAS  Google Scholar 

  142. J. Hennecke, A. Sillen, W. M. Huber, and Y. Engelborghs, Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli. Biochemistry 36, 6391–6400 (1997)

    Article  CAS  PubMed  Google Scholar 

  143. M. Gastmans, G. Volckaert, and Y. Engelborghs, Tryptophan microstate reshuffling upon the binding of cyclosporin A to human cyclophilin A. Proteins-.June 35, 464–474 (1999)

    Article  CAS  Google Scholar 

  144. L. Qiu, S. A. Pabit, A. E. Roitberg, and S. J. Hagen, Smaller and faster: The 20-residue Trp-cage protein folds in 4μs. J. Am. Chem. Soc. 124, 12952–12953 (2002)

    Article  CAS  PubMed  Google Scholar 

  145. D. A. Egan, T. M. Logan, H. Liang, E. Matayoshi, S. W. Fesik, and T. F. Holzman, Equilibrium denaturation of recombinant human FK binding protein in urea. Biochemistry 32, 1920–1927 (1993)

    Article  CAS  PubMed  Google Scholar 

  146. A. Sillen, J. F. Diaz, and Y. Engelborghs, A step toward the prediction of the fluorescence lifetimes of tryptophan residues in proteins based on structural and spectral data. Protein-Sci 9, 158–169 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Callis, P.R. (2009). Exploring the Electrostatic Landscape of Proteins with Tryptophan Fluorescence. In: Reviews in Fluorescence 2007. Reviews in Fluorescence, vol 2007. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88722-7_10

Download citation

Publish with us

Policies and ethics