Advertisement

Introduction

  • Eligius M. T. Hendrix
  • Boglárka G.-Tóth
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 37)

Abstract

Optimization can be applied to existing or specifically constructed mathematical models. The idea is that one would like to find an extreme of one output of the model by varying several parameters or variables. The usual reason to find appropriate parameter values is due to decision support or design optimization. In this work we mainly consider the mathematical model as given and have a look at how to deal with optimization. Several examples of practical optimization problems are given.

Keywords

Parameter Model Structure Usual Reason Nonlinear Programming Model Mathematical Model Optimization Feasible Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer ArchitectureMálaga UniversityMálagaSpain
  2. 2.Department of Differential EquationsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations