Seizure Monitoring and Alert System for Brain Monitoring in an Intensive Care Unit

  • J. Chris SackellaresEmail author
  • Deng-Shan ShiauEmail author
  • Alla R. Kammerdiner
  • Panos M. Pardalos
Part of the Springer Optimization and Its Applications book series (SOIA, volume 38)


Although monitoring for most organ systems is commonly used in intensive care units (ICU), brain function monitoring relies almost exclusively upon bedside clinical observations. As a result, a large number of nonconvulsive seizures go undiagnosed every day. Recent clinical studies have demonstrated the clinical utility of continuous EEG monitoring in ICU settings. Continuous EEG is a well-established tool for detecting nonconvulsive seizures, cerebral ischemia, cerebral hypoxia, and other reversible brain disturbances in the ICU. However, the utility of EEG monitoring currently depends on the availability of expert medical professionals, and interpretation is labor intensive. Such experts are available only in tertiary care centers. We have designed a seizure monitoring and alert system (SMAS) that utilizes a seizure susceptibility index (SSI) and seizure detection algorithms based on measures that characterize the spatiotemporal dynamical properties of the EEG signal. The SMAS allows distinguishing the organized seizure patterns from more irregular and less organized background EEG activity. The algorithms and initial results in human long-term EEG recordings are described.


Lyapunov Exponent Epileptic Seizure Temporal Lobe Epilepsy Spin Glass Electrode Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Binnie, C. Long term EEG recording and its role in clinical practice. IEE Colloquium on Data Logging of Physiological Signals, pp. 5/1–5/2 (1995)Google Scholar
  2. 2.
    Elger, C., Lehnertz, K.: Seizure prediction by non-linear time series analysis of brain electrical activity. Eur J Neurosci 10, 786–789 (1998)CrossRefGoogle Scholar
  3. 3.
    Freeman, W.J. Strange attractors that govern mammalian brain dynamics shown by trajectories of EEG potentials. IEEE Trans CaS 35, 781–784 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Griffiths, M., Grainger, P., Cox, M., Preece, A. Recent advances in EEG monitoring for general anesthesia, altered states of consciousness and sports performance science. In: The 3rd IEE International Seminar on Medical Applications of Signal Processing, pp. 1–5 (2005)Google Scholar
  5. 5.
    Hirsch, L. Continuous EEG monitoring in the intensive care unit: an overview. J Clin Neurophysiol 21(5), 332–340 (2004)Google Scholar
  6. 6.
    Hoeve, M.J., Jones, R., Carroll, G., Goelz, H. Automated detection of epileptic seizures in the EEG. In: Engineering in Medicine and Biology Society, Proceedings of the 23rd Annual International Conference of the IEEE, pp. 943–946 (2001)Google Scholar
  7. 7.
    Horst, R., Pardalos, P., Thoai, N. Introduction to Global Optimization, 2nd edn. Kluwer Academic Publishers, Boston (2000)Google Scholar
  8. 8.
    Iasemidis, L. On the dynamics of the human brain in temporal lobe epilepsy. Ph.D. thesis, University of Michigan, Ann Arbor, Ph.D. Dissertation (1991)Google Scholar
  9. 9.
    Iasemidis, L., Principe, J., Sackellares, J. Measurement and quantification of spatiotemporal dynamics of human epileptogenic seizures. In: Nonlinear Signal Processing in Medicine. IEEE Press, New Jersey (2000)Google Scholar
  10. 10.
    Iasemidis, L., Sackellares, J. The evolution with time of the spatial distribution of the largest Lyapunov exponent on the human epileptic cortex. In: Measuring Chaos in the Human Brain. World Scientific, Singapore (1991)Google Scholar
  11. 11.
    Iasemidis, L., Sackellares, J., Roper, S., Gilmore, R. An automated seizure prediction paradigm. Epilepsia 39(6), 207 (1998)Google Scholar
  12. 12.
    Iasemidis, L., Shiau, D., Chaovalitwongse, W., Sackellares, J., Pardalos, P., Principe, J., Carney, P., Prasad, A., Veeramani, B., Tsakalis, K. Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng 50(5), 616–627 (2003)CrossRefGoogle Scholar
  13. 13.
    Iasemidis, L., Shiau, D.S., Sackellares, J., Pardalos, P., Prasad, A. Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Trans Biomed Eng 51(3), 493–506 (2004)CrossRefGoogle Scholar
  14. 14.
    Iasemidis, L., Zaveri, H., Sackellares, J.C., Williams, W. Linear and nonlinear modeling of ECoG in temporal lobe epilepsy. 25th Annual Rocky Mountain Bioengineering Symposium 24, 187–193 (1988)Google Scholar
  15. 15.
    Iasemidis, L., Zaveri, H., Sackellares, J., Williams, W. Phase space analysis of EEG data in temporal lobe epilepsy. In: IEEE Engineering and Medicine & Biology Society 10th Annual International Conference. New Orleans (1988)Google Scholar
  16. 16.
    Jordan, K. Continuous EEG and evoked potential monitoring in the neuroscience intensive care units. J Clin Neurophysiol 10(4), 445–475 (1993)CrossRefGoogle Scholar
  17. 17.
    Jordan, K. Continuous EEG monitoring in the neuroscience intensive care unit and emergency department. J Clin Neurophysiol 16(1), 14–39 (1999)CrossRefGoogle Scholar
  18. 18.
    Jordan, K. Emergency EEG and continuous EEG monitoring in acute ischemic stroke. J Clin Neurophysiol 21(5), 341–352 (2004)Google Scholar
  19. 19.
    Kaji, Y., Akutagawa, M., Shichijo, F., Kinouchi, H.N.Y., Nagahiro, S. Analysis for brain activities during operations using measured EEG. In: Conference on Proceedings of IEEE Engineering in Medicine and Biology Society, pp. 6003–6006 (2005)Google Scholar
  20. 20.
    Kalayci, T., Ozdamar,O. Wavelet preprocessing for automated neural network detection of EEG spikes. IEEE Eng Med Biol Mag 14(2), 160–166 (1995)CrossRefGoogle Scholar
  21. 21.
    Kelso, J., Mandel, A., Shlesinger, M. Dynamical patterns in complex systems. World Scientific, Singapore (1988)Google Scholar
  22. 22.
    Kirlangic, M., Perez, D., Kudryavtseva, S., Griessbach, G., Henning, G., Ivanova, G. Fractal dimension as a feature for adaptive electroencephalogram segmentation in epilepsy. In: Engineering in Medicine and Biology Society. Proceedings of the 23rd Annual International Conference of the IEEE, pp. 1573–1576 (2001)Google Scholar
  23. 23.
    Kittel, W., Epstein, C., Hayes, M. EEG monitoring based on fuzzy classification. In: Circuits and Systems, Proceedings of the 35th Midwest Symposium, pp. 699–702 (1992)Google Scholar
  24. 24.
    Kraskov, A., Kreuz, T., Quiroga, R.Q., Grassberger, P., Mormann, F., Lehnertz, K., Elger, C. Phase synchronization using continuous wavelet transform of the EEG for interictal focus localization in mesial temporal lobe epilepsy. Epilepsia 42(7), 43 (2001)Google Scholar
  25. 25.
    Liu, Q., Sun, M., Scheuer, M., Sclabassi, R. Patient tracking for video/EEG monitoring based on change detection in DCT domain. In: Proceedings of the IEEE 31st Annual Northeast, pp. 114–115 (2005)Google Scholar
  26. 26.
    Martinerie, J., Adam, C., Quyen, M.L.V., Baulac, M., Clemenceu, S., Renault, B., Varela, F. Epileptic seizures can be anticipated by non-linear analysis. Nat Med 4, 1173–1176 (1998)CrossRefGoogle Scholar
  27. 27.
    Mezard, M., Parisi, G., Virasoro, M. Spin Glass Theory and Beyond. World Scientific, Singapore (1987)Google Scholar
  28. 28.
    Mormann, F., Andrzejak, R., Kreuz, T., Rieke, C., David, P., Elger, C., Lehnertz, K. Automated preictal state detection based on a decrease in synchronization in intracranial electroencephalography recordings from epilepsy patients. Phys Rev E 67, 021912 (2003)Google Scholar
  29. 29.
    Mormann, F., Kreuz, T., Andrzejak, R., David, P., Lehnertz, K., Elger, C. Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res 53, 173 (2003)CrossRefGoogle Scholar
  30. 30.
    Mormann, F., Lehnertz, K., David, P., Elger, C. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144, 358 (2000)zbMATHCrossRefGoogle Scholar
  31. 31.
    Packard, N., Crutchfield, J., Farmer, J., Shaw, R. Geometry from a time series. Phys Rev Lett 45(9), 712–716 (1980)CrossRefGoogle Scholar
  32. 32.
    Park, H., Lee, Y., Lee, D.S., Kim, S., et al. Detection of epileptiformactivity using wavelet and neural network. Eng Med Biol Soc 3, 1194 (1997)Google Scholar
  33. 33.
    Sackellares, J., Iasemidis, L., Gilmore, R., Roper, S. Epilepsy – when chaos fails.In: Chaos in the brain? World Scientific, Singapore (2002)Google Scholar
  34. 34.
    Sackellares, J., Iasemidis, L., Shiau, D.S., Pardalos, P., Carney, P. Spatio-temporal transitions in temporal lobe epilepsy. In: Quantitative Neuroscience: Models, Algorithms, Diagnostics, and Theraputic Applications, pp. 223–238. Kluwer Academic Publishers, Norwell, MA (2004)Google Scholar
  35. 35.
    Sackellares, J., Shiau, D.S., Principe, J., Yang, M., Dance, L., Sucharitdamrong, W., Chaovalitwongse, W., Pardalos, P., Iasemidis, L. Predictability analysis for an automated seizure prediction algorithm. J Clin Neurophysiol 23(6), 509–520 (2006)CrossRefGoogle Scholar
  36. 36.
    Varela, F.J. Resonant cell assemblies: A new approach to cognitive functions and neuronal synchrony. Biol Res 28, 81 (1995)Google Scholar
  37. 37.
    Varela, F.J., Lachaux, J.P., Rodriguez, E., Martinerie, J. The brain web: Phase synchronization and large-scale integration. Nat Rev Neurosci 2(229) (2001)Google Scholar
  38. 38.
    Wolf, A., Swift, J., Swinney, H., Vastano, J. Determining Lyapunov exponent from a time series. Physica D 16, 285–317 (1985)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Optima Neuroscience, Inc.GainesvilleUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations