Skip to main content

Investigating Functional Cooperation in the Human Brain Using Simple Graph-Theoretic Methods

  • Chapter
  • First Online:
Computational Neuroscience

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 38))

Abstract

This chapter introduces a very simple analytic method for mining large numbers of brain imaging experiments to discover functional cooperation between regions. We then report some preliminary results of its application, illustrate some of the many future projects in which we expect the technique will be of considerable use (including a way to relate fMRI to EEG), and describe a research resource for investigating functional cooperation in the cortex that will be made publicly available through the lab web site. One significant finding is that differences between cognitive domains appear to be attributable more to differences in patterns of cooperation between brain regions, rather than to differences in which brain regions are used in each domain. This is not a result that is predicted by prevailing localization-based and modular accounts of the organization of the cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abello, J., Pardalos, P.M., Resende, M.G.C. On maximum clique problems in very large graphs in external memory algorithms. In: Abello, J., Vitter, J. (eds.) AMS-DIMACS Series on Discrete Mathematics and Theoretical Computer Science, Vol. 50 (1999)

    Google Scholar 

  2. Alba, R.D. A graph-theoretic definition of a sociometric clique. J Math Sociol 3, 113–126 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, J.R., Qin, Y., Jung, K.J., Carter, C.S. Information processing modules and their relative domain specificity. Cogn Psychol 54, 185–217 (2007)

    Article  Google Scholar 

  4. Anderson, M.L. Evolution of cognitive function via redeployment of brain areas. Neuroscientist 131, 13–21 (2007)

    Article  Google Scholar 

  5. Anderson, M.L. Massive redeployment, exaptation, and the functional integration of cognitive operations. Synthese 159(3), 329–345 (2007)

    Article  Google Scholar 

  6. Anderson, M.L. The massive redeployment hypothesis and the functional topography of the brain. Philos Psychol 21(2), 143–174 (2007)

    Article  Google Scholar 

  7. Attwell, D., Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci 25(12), 621–25 (2002)

    Article  Google Scholar 

  8. Bock, R.D., Husain, S.Z. An adaptation of Holzinger's b-coefficients for the analysis of sociometric data. Sociometry 13, 146–53 (1950)

    Article  Google Scholar 

  9. Bonacich, P. Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2, 113–20 (1972)

    Article  Google Scholar 

  10. Brannen, J.H., Badie, B., Moritz, C.H., Quigley, M., Meyerand, M.E., Haughton, V.M. Reliability of functional MR imaging with word-generation tasks for mapping Broca's area. Am J Neuroradiol 22, 1711–1718 (2001)

    Google Scholar 

  11. Cabeza, R., Nyberg, L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12, 1–47 (2000)

    Article  Google Scholar 

  12. Chaovalitwongse, W., Fan, Y.J., Sachdeo, R. On the k-nearest dynamic time warping neighbor for abnormal brain activity classification. IEEE Trans Syst Man Cybern A Syst Hum 37(6), 1005–1016 (2007). To appear

    Article  Google Scholar 

  13. Chaovalitwongse, W., Iasemidis, L.D., Pardalos, P.M., Carney, P.R., Shiau, D.S., Sackellares, J.C. Performance of a seizure warning algorithm based on the dynamics of intracranial EEG. Epilepsy Res 64, 93–133 (2005)

    Article  Google Scholar 

  14. Chaovalitwongse, W., Pardalos, P.M., Prokopyev, O.A. Electroencephalogram (EEG) time series classification: Applications in epilepsy. Ann Operations Res 148, 227–250 (2006)

    Article  MATH  Google Scholar 

  15. Diestel, R. Graph Theory, 3rd edn. Springer-Verlag, Heidelberg (2005)

    MATH  Google Scholar 

  16. Gross, J.L., Yellen, J. Graph Theory and its Applications, [ed]2nd edn. Discrete Mathematics and Its Applications. Chapman & Hall/CRC, London (2005)

    Google Scholar 

  17. Han X., Xu, C., Braga-Neto, U., Prince, J.L. Topology correction in brain cortex segmentation using a multiscale, graph-based approach. IEEE Trans Med Imaging 21, 109–121 (2002)

    Article  Google Scholar 

  18. Hayes, B. Graph theory in practice: Part I. Am Sci 88(1), 9–13 (2000)

    Google Scholar 

  19. Hayes, B. Graph theory in practice: Part II. Am Sci 88(2), 104–109 (2000)

    Google Scholar 

  20. Horwitz, B., Poeppel, D. How can EEG/MEG and fMRI/PET data be combined? Hum. Brain Mapp. 17, 1–3 (2002)

    Article  Google Scholar 

  21. Laird, A.R., Fox, M., Prince, C.J., Glahn, D.C., Uecker, A.M., Lancaster, J.L., Turkeltaub, P.E., Kochunov, P., Fox, P.T. Ale meta-analysis: Controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25, 155–164 (2005)

    Article  Google Scholar 

  22. Laird, A.R., Lancaster, J.L., Fox, P.T. Brainmap: The social evolution of a functional neuroimaging database. Neuroinformatics 3, 65–78 (2005)

    Article  Google Scholar 

  23. Lancaster, J., Laird, A., Fox, M., Glahn, D., Fox, P. Automated analysis of meta-analysis networks. Hum Brain Mapp 25, 174–184 (2005)

    Article  Google Scholar 

  24. Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Kochunov, P.V., Nickerson, D., Mikiten, S.A., Fox, P.T. Automated talairach atlas labels for functional brain mapping. Hum Brain Mapp 10, 120–131 (2000)

    Article  Google Scholar 

  25. Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001)

    Article  Google Scholar 

  26. Nunez, P.L., Silberstein, R.B. On the relationship of synaptic activity to macroscopic measurements: Does co-registration of EEG with fMRI make sense? Brain Topogr 13, 79–96 (2000)

    Article  Google Scholar 

  27. Sporns, O., Ktter, R. Motifs in brain networks. PLoS Biol 2, e369 (2004)

    Google Scholar 

  28. Özcan, M., Baumgärtner, U., Vucurevic G. Stoeter, P., Treede, R.D. Spatial resolution of fMRI in the human parasylvian cortex: Comparison of somatosensory and auditory activation. NeuroImage 25(3), 877–887 (2005)

    Article  Google Scholar 

  29. Grave de Peralta Menendez, R., Gonzales Andino, S., Morand, S., Michel, C., Landis, T. Imaging the electrical activity of the brain. Electra Hum Brain Mapp 9, 1–12 (2000)

    Article  Google Scholar 

  30. Grave de Peralta Menendez, R., Murray, M.M., Michel, C., Martuzzi, R., Gonzales Andino, S.L. Electrical neuroimaging based on biophysical constraints. NeuroImage 21, 527–539 (2004)

    Article  Google Scholar 

  31. Sporns, O., Tononi, G., Edelman, G.M. Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10, 127–141 (2000)

    Article  Google Scholar 

  32. Suharitdamrong, W., Chaovalitwongse, A., Pardalos, P.M. Graph theory-based data mining techniques to study similarity of epileptic brain network. In: Proceedings of DIMACS Workshop on Data Mining, Systems Analysis, and Optimization in Neuroscience (2006)

    Google Scholar 

  33. Turkeltaub, P.E., Eden, G.F., Jones, K.M., Zeffiro, T.A. Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. Neuroimage 16, 765–780 (2002)

    Article  Google Scholar 

  34. Ugurbil, K., Toth, L., Kim, D.S. How accurate is magnetic resonance imaging of brain function? Trends Neurosci. 26(2), 108–114 (2003)

    Article  Google Scholar 

  35. Viswanathan, A., Freeman, R.D. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci 10(10), 1308–1312 (2007)

    Article  Google Scholar 

  36. Vitacco, D., Brandeis, D., Pasual-Marqui, R., Martin, E. Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp 17, 4–12 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anderson, M.L., Brumbaugh, J., Şuben, A. (2010). Investigating Functional Cooperation in the Human Brain Using Simple Graph-Theoretic Methods. In: Chaovalitwongse, W., Pardalos, P., Xanthopoulos, P. (eds) Computational Neuroscience. Springer Optimization and Its Applications(), vol 38. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88630-5_2

Download citation

Publish with us

Policies and ethics