Advances Toward Closed-Loop Deep Brain Stimulation

  • Stathis S. Leondopulos
  • Evangelia Micheli-Tzanakou
Part of the Springer Optimization and Its Applications book series (SOIA, volume 38)


A common treatment for advanced stage Parkinsonism is the application of a periodic pulse stimulus to specific regions in the brain, also known as deep brain stimulation (or DBS). Almost immediately following this discovery, the idea of dynamically controlling the apparatus in a “closed-loop” or neuromodulatory capacity using neural activity patterns obtained in “real-time” became a fascination for many researchers in the field. However, the problems associated with the reliability of signal detection criteria, robustness across particular cases, as well as computational aspects, have delayed the practical realization of such a system. This review seeks to present many of the advances made toward closed-loop deep brain stimulation and hopefully provides some insight to further avenues of study toward this end.


Basal Ganglion Deep Brain Stimulation Essential Tremor Cochlear Implant Spike Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahmed, R.E., Al-Turaig, M.A., Alshebeili, S.A. VLSI architecture for computing third-order cumulants, Int J Electron 77(1), 95–104 (1994)CrossRefGoogle Scholar
  2. 2.
    Alippi, C., Braione, P. Classification methods and inductive learning rules: What we may learn from theory. IEEE Trans Syst, Man, Cybern C Appl Rev 31(4), 364–378 (2006)Google Scholar
  3. 3.
    Alvarez, L., Macias, R., Guridi, J., Lopez, G., Alvarez, E., Maragoto, C., Teijeiro, J., Torres, A., Pavon, N., Rodriguez-Oroz, M.C., Ochoa, L., Hetherington, H., Juncos, J., De Long, M.R., Obeso, J.A. Dorsal subthalamotomy for Parkinsons disease. Mov Disord 16(1), 72–78 (2001)CrossRefGoogle Scholar
  4. 4.
    Arvanitaki, A. Les variations gradues de la polarisation des systmes excitables, Thesis, University Lyons, Hermann et cie, Paris, 1938.Google Scholar
  5. 5.
    Ashkan, K., Wallace, B., Bell, B.A., Benabid, A.L. Deep brain stimulation of the subthalamic nucleus in Parkinsons disease 1993 2003: Where are we 10 years on? Br J Neurosurg 8(1), 19–34 (Feb 2004)Google Scholar
  6. 6.
    Bai, J., Lin, J. A pacemaker working status telemonitoring algorithm. IEEE Trans Inform Technol Biomed 3(3) (Sep 1999)Google Scholar
  7. 7.
    Bardeen, J., Brattain, W.H. The transistor, a semiconductor triode. Phys Rev 74(2), 230 (1948)CrossRefGoogle Scholar
  8. 8.
    Barto, A.G. Adaptive critic and the basal ganglia. In Houk, J.C., Davis, J.L., Beiser, D.G. (eds.) Models of Information Processing in the Basal Ganglia, pp. 215–232. MIT Press, Cambridge (1995)Google Scholar
  9. 9.
    Bear, M.F., Connors, B.W., Pardiso, M.A. Neuroscience: Exploring the Brain. LippincottWilliams & Wilkins, Philadelphia (2001)Google Scholar
  10. 10.
    Bedard, C., Kroger, H., Destexhe, A. Model of low-pass filtering of local field potentials in brain tissue. Phys Rev E – Stat Nonlin Soft Matter Phys 73(5), 051911 (2006)Google Scholar
  11. 11.
    Bedard, C., Kroger, H., Destexhe, A. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J 86, 1829–1842 (March 2004)CrossRefGoogle Scholar
  12. 12.
    Bekar, L., Libionka, W., Tian, G., et al. Adenosine is crucial for deep brain stimulation mediated attenuation of tremor. Nat Med 14(1), 7580.s (2008)Google Scholar
  13. 13.
    Benabid, A.L., Pollak, P., Louveau, A., Henry, S., de Rougemont, J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophys 50(16), 34–46 (1987)Google Scholar
  14. 14.
    Benabid, A.L. Deep brain stimulation for Parkinson's disease, Curr Opin Neurobiol, 13, 696–706 (2003)CrossRefGoogle Scholar
  15. 15.
    Berger, T.W. Implantable biomimetic microelectronics for the replacement of hippocampal memory function lost due to damage or disease. IEEE International Joint Conference on Neural Networks, Vol.3, pt.3. p. 1659 (2004)Google Scholar
  16. 16.
    Bergman, H., Wichmann, T., Karmon, B., DeLong, M.R. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. J Neurophysiol 72(2), 507–520 (Aug 1994)Google Scholar
  17. 17.
    Berns, G.S., Sejnowski, T.J. A computational model of how the basal ganglia produce sequences. J Cogn Neurosci 10(1), 108–121 (1998)CrossRefGoogle Scholar
  18. 18.
    Bia, A. ALOPEX-B: A new, simple but yet faster version of the ALOPEX training algorithm, Int J Neural Syst 11(6), 497–507 (2001)Google Scholar
  19. 19.
    Bluma, A.L., Langley, P. Selection of relevant features and examples in machine learning. Artif Intell 97, 245–271 (1997)CrossRefGoogle Scholar
  20. 20.
    Brown, J.W., Bullock, D., Grossberg, S. How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw, 17, 471–510 (2004)MATHCrossRefGoogle Scholar
  21. 21.
    Cavallo, T. An Essay on the Theory and Practice of Medical Electricity. Printed for the author, London (1780)Google Scholar
  22. 22.
    Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.L. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci, 2(7) (July 1999)Google Scholar
  23. 23.
    Chardack, W., Gage, A., Greatbatch, W. A transistorized, self-contained, implantable pacemaker for the long-term correction of complete heart block. Surgen 48, 543 (1960)Google Scholar
  24. 24.
    Clark, J., Plonsey, R. A mathematical evaluation of the core conductor model. Biophys J 6, 95 (1966)CrossRefGoogle Scholar
  25. 25.
    Coatrieux, J.L. Integrative science: Biosignal processing and modeling. IEEE Eng Med Biol Mag 23(3), 9–12 (May–June 2004)CrossRefGoogle Scholar
  26. 26.
    Cooley, J.W., Tukey, J.W. An algorithm for the machine calculation of complex Fourier series, Math Comput 19, 297–301 (1965)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Coop, A.D., Reeke, G.N., Jr. The composite neuron: A realistic one-compartment Purkinje cell model suitable for large-scale neuronal network simulations. J Comput Neurosci 10(2), 173–186 (2001)CrossRefGoogle Scholar
  28. 28.
    Cotzias, G.C., VanWoert, M.H., Schiffer, L.M. Aromatic amino acids and modification of parkinsonism. N Engl J Med 276, 374–379 (1967)CrossRefGoogle Scholar
  29. 29.
    Dasey, T.J., Micheli-Tzanakou, E. Fuzzy neural networks. In: Micheli-Tzanakou, E. (ed.) Supervised and Unsupervised Pattern Recognition Feature Extraction and Computational Intelligence, pp. 135–162. CRC Press, LLC (2000)Google Scholar
  30. 30.
    De Forest, L. Device for amplifying feeble electrical currents, US Patent #841387 (1907)Google Scholar
  31. 31.
    DeLong, M.R. Primate models of movement disorders of basal ganglia origin, Trends Neurosci 13, 281–285 (1990)CrossRefGoogle Scholar
  32. 32.
    Dehaene, J., Moonen, M., Vandewalle, J. An improved stochastic gradient algorithm for principal component analysis and subspace tracking. IEEE Trans Signal Process 45(10) (Oct 1997)Google Scholar
  33. 33.
    Delsarte, P., Genin, Y. On the splitting of the classical algorithms in linear prediction theory. IEEE Trans Acoust ASSP-35(5) (May 1987)Google Scholar
  34. 34.
    Djurfeldt, M., Ekeberg, O., Graybiel, A.M. Cortex-basal ganglia interaction and attractor states. Neurocomputing 3840, 573–579 (2001)CrossRefGoogle Scholar
  35. 35.
    Donoghue, J.P. Connecting cortex to machines: Recent advances in brain interfaces, Nat Neurosci Suppl 5 (Nov 2002)Google Scholar
  36. 36.
    Dostrovsky, J.O., Levy, R., Wu, J.P., Hutchison, W.D., Tasker, R.R., Lozano, A.M. Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophys 84, 570–574 (Jul 2000)Google Scholar
  37. 37.
    Du Bois-Reymond, E. Untersuchungen ber thierische elektricitt. G. Reimer, Berlin (1848)Google Scholar
  38. 38.
    Tzanakou, E. Principles and Design of the ALOPEX Device: A Novelmethod of Mapping Visual Receptive Fields, Ph.D. dissertation, Syracuse University, Department of Physics (1977)Google Scholar
  39. 39.
    Feng, X., Greenwald, B., Rabitz, H., Shea-Brown, E., Kosut, R. Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: Concepts and lessons from a computational model. J Neural Eng 4, L14–L21 (2007)Google Scholar
  40. 40.
    Fitch, M.T., Doller, C., Combs, C.K., Landreth, G.E., Silver, J. Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19(19), 8182–8198, Oct 1 (1999)Google Scholar
  41. 41.
    Fitz Hugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6), 445–466 (1961)CrossRefGoogle Scholar
  42. 42.
    Friesen, G., Jannett, T., JadallahM., Yates, S., Quint, S., Nagle, H. A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans Biomed Eng 37(1), 85–98 (Jan 1990)CrossRefGoogle Scholar
  43. 43.
    Fukai, T. Modeling the interplay of short-term memory and the basal ganglia in sequence processing. Neurocomputing {\bf{26–27}}, 687–692 (1999)CrossRefGoogle Scholar
  44. 44.
    Fukai, T. Sequence generation in arbitrary temporal patterns from theta-nested gamma oscillations: A model of the basal ganglia-thalamo-cortical loops. Neural Netw 12(7–8), 975–987 (1999)CrossRefGoogle Scholar
  45. 45.
    Gabriel, S., Lau, R.W., Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41, 2271–2293 (1996)CrossRefGoogle Scholar
  46. 46.
    Gao, Y., Blacky, M.J., Bienenstock, E., Shoham, S., Donoghue, J.P. Probabilistic inference of hand motion from neural activity in motor cortex. Adv Neural Inf Process Syst 14, 213–220 (2002)Google Scholar
  47. 47.
    Gasser, H.S., Erlanger, J. A study of the action currents of the nerve with the cathode ray oscillograph. Am J Physiol 62, 496–524 (1922)Google Scholar
  48. 48.
    Georgopoulos, A., Schwartz, A., Kettner, R. Neural population coding of movement direction. Science 233, 1416–1419 (1986)CrossRefGoogle Scholar
  49. 49.
    Georgopoulos, A.P., Lurito, J.T., Petrides, M., Schwartz, A.B., Massey, J.T. Mental rotation of the neuronal population vector. Science, 243, 234–236 (1989)CrossRefGoogle Scholar
  50. 50.
    Gerosa, A., Maniero, A., Neviani, A. A fully integrated dual-channel logdomain programmable preamplifier and filter for an implantable cardiac pacemaker, IEEE Transactions on Circuits and Systems. I: Regular Papers, 51(10) (Oct 2004)Google Scholar
  51. 51.
    Gerosa, A., Maniero, A., Neviani, A. A fully integrated two-channel a/d interface for the acquisition of cardiac signals in implantable pacemakers. IEEE J Solid-State Circuits 39(7), July (2004)Google Scholar
  52. 52.
    Ghovanloo, M., Najafi, K. A Modular 32-site wireless neural stimulation microsystem. IEEE J Solid-State Circuits 39(12), 2457–2466 (2004)CrossRefGoogle Scholar
  53. 53.
    Gillies, A., Arbuthnott, G. Computational models of the basal ganglia, Mov Dis 15(5), 762–770 (2000)CrossRefGoogle Scholar
  54. 54.
    Grill, W.M., Snyder, A.N., Miocinovic, S. Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport 15(7), 1137–1140, May 19 (2004)CrossRefGoogle Scholar
  55. 55.
    Guridi, J., Lozano, A.M. A brief history of pallidotomy. Neurosurgery 41(5), 1169–1180 (1997)CrossRefGoogle Scholar
  56. 56.
    Gurney, K., Prescott, T.J., Redgrave, P. A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84(6), 401–410 (2001)MATHGoogle Scholar
  57. 57.
    Gurney, K., Prescott, T.J., Redgrave, P. A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern 84(6), 411–423 (2001)MATHCrossRefGoogle Scholar
  58. 58.
    Hamilton, J. Analysis of physiological function in the globus pallidus with neural networks, (PhD-MD) Jan (2000)Google Scholar
  59. 59.
    Hamilton, J.L., Micheli-Tzanakou, E., Lehman, R. Analysis of electrophysiological data in surgical treatment for Parkinson's disease. Proceedings of the 24th IEEE Northeast Conference on Bioengineering, pp. 5–6 (1998)Google Scholar
  60. 60.
    Hamilton, J.L., Micheli-Tzanakou, E., Lehman, R.M. Neural networks trained with simulation data for outcome prediction in pallidotomy for Parkinson's disease. IEEE Eng Med Biol Soc Conf 1, 1–4 (2000)Google Scholar
  61. 61.
    Hanson, F.B., Tuckwell, H.C. Diffusion approximation for neuronal activity including reversal potentials. J Theor Neurobiol 2, 127–153 (1983)Google Scholar
  62. 62.
    Harth, E., Tzanakou, E. ALOPEX: A stochastic method for determining visual receptive fields, Vision Research, Vol.14, pp.1475–1482, (1974)CrossRefGoogle Scholar
  63. 63.
    Haykin, S., Chen, Z., Becker, S. Stochastic correlative learning algorithms. IEEE Trans Signal Process, 52(8) (Aug 2004)Google Scholar
  64. 64.
    Hindmarsh, J.L., Rose, R.M. A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B: Biol Sci 221(1222), 87–102 March (1984)CrossRefGoogle Scholar
  65. 65.
    Hodgkin, A.L., Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117, 500–544 (1952)Google Scholar
  66. 66.
    Holmstrom, L., Koistinen, P., Laaksonen, J., Oja, E. Neural and statistical classifiers-taxonomy and two case studies. IEEE Trans Neural Netw 8(1) Jan (1997)Google Scholar
  67. 67.
    Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities, Proc Natl Acad Sci USA 79 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  68. 68.
    House, W.F. Cochlear implants: My perspective, Dr. William F. House, 1995.Google Scholar
  69. 69.
    Humayun, M.S., de Juan E., Jr., Dagnelie, G., Greenberg, R.J., Propst, R.H., Phillips, D.H. Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114(1) (1996)Google Scholar
  70. 70.
    Humphries, M.D., Gurney, K.N. A pulsed neural network model of bursting in the basal ganglia. Neural Netw 14(6–7), 845–863 (2001)CrossRefGoogle Scholar
  71. 71.
    Hurtado, J.M., Gray, C.M., Tamas, L.B., Sigvardt, K.A. Dynamics of tremor-related oscillations in the human globus pallidus: A single case study. Proc Natl Acad Sci USA 96, 1674–1679 Feb (1999)CrossRefGoogle Scholar
  72. 72.
    Iasemidis LD, Shiau DS, Pardalos PM, Chaovalitwongse, W., Narayanan, K., Prasad, A., Tsakalis, K., Carney, P.R., Sackellares, J.C. Long-term prospective online real-time seizure prediction. Clin Neurophys 116(3), 532–544 (2005)CrossRefGoogle Scholar
  73. 73.
    Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans Neural Netw 14, 1569–1572 Nov (2003)CrossRefGoogle Scholar
  74. 74.
    Izhikevich, E.M. Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15, 1063–1070 (2004)CrossRefGoogle Scholar
  75. 75.
    Izhikevich, E.M. Which model to use for cortical spiking neurons. IEEE Transactions on Neural Netw 15(5) (2004)Google Scholar
  76. 76.
    Jallabert, J. Experiences sur lectricit, Geneve, Barrillot & Fils (1748)Google Scholar
  77. 77.
    Joel, D., Niv, Y., Ruppin, E. Actor-critic models of the basal ganglia: New anatomical and computational perspectives. Neural Netw 15, 535–547 (2002)CrossRefGoogle Scholar
  78. 78.
    John, M.S. Adaptive brain stimulation method and system, US Patent#6463328, (2002)Google Scholar
  79. 79.
    Johnson, M.D., Otto, K.J., Kipke, D.R. Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances. IEEE Trans Neural Syst Rehabil Eng 13(2), 160–165 (2005)CrossRefGoogle Scholar
  80. 80.
    Kaneko, H., Suzuki, S.S., Okada, J., Akamatsu, M. Multineuronal spike classification based on multisite electrode recording, whole-waveform analysis, and hierarchical clustering. IEEE Trans Biomed Eng 46(3), March (1999)Google Scholar
  81. 81.
    Katz, B., Miledi, R. The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc R Soc Lond, B Biol Sci 161(985), 483–495 (Feb 16, 1965)CrossRefGoogle Scholar
  82. 82.
    Kemere, C., Shenoy, K.V., Meng, T.H. Model-based neural decoding of reaching movements: A maximum likelihood approach. IEEE Trans Biomed Eng 51(6) (Jun 2004)Google Scholar
  83. 83.
    Kilby, J.S. Miniaturized electronic circuits, US Patent #3138743, 1964.Google Scholar
  84. 84.
    Kimber, T.E., Tsai, C.S., Semmler, J., Brophy, B.P., Thompson, P.D. Voluntary movement after pallidotomy in severe Parkinson's disease, Brain 122, 895–906 (1999)CrossRefGoogle Scholar
  85. 85.
    Kite, C. An Essay on the Recovery of the Apparently Dead. C. Dilly, London (1788)Google Scholar
  86. 86.
    Kohler, B.U., Hennig, C., Orglmeister, R. The principles of QRS detection. IEEE Eng Med Biol Mag 21(1), 42–57, Jan–Feb (2002)CrossRefGoogle Scholar
  87. 87.
    Konstandinides, K., Tyree, V.C., Yao, K. Single chip implementation of the Levinson algorithm. IEEE J Solid-State Circuits SC-20(5) (Oct 1985)Google Scholar
  88. 88.
    Kulkarni, S.R., Lugosi, G., Venkatesh, S.S. Learning pattern classification–-a survey. IEEE Trans Inform Theory 44(6) (1998)Google Scholar
  89. 89.
    Kumar, R. Methods for programming and patient management with deep brain stimulation of the globus pallidus for the treatment of advanced Parkinson's disease and dystonia. Mov Dis 17(3), S198–S207 (2002)Google Scholar
  90. 90.
    Lee, J., Rhew, H., Kipke, D., Flynn, M. A 64 channel programmable closed-loop deep brain stimulator with 8 channel neural amplifier and logarithmic ADC, 2008 Symposium on VLSI Circuits Digest of Technical Papers, pp.76–77 (2008)Google Scholar
  91. 91.
    Lehman, R.M., Micheli-Tzanakou, E., Medl, A., Hamilton, J.L. Quantitative online analysis of physiological data for lesion placement in pallidotomy. Stereotact Funct Neurosurg 75(1), 1–15 (2000)CrossRefGoogle Scholar
  92. 92.
    Lenz, F.A., Kwan, H.C., Martin, R.L., Tasker, R.R., Dostrovsky, J.O., Lenz, Y.E. Single unit analysis of the human ventral thalamic nuclear group. Tremor related activity in functionally identified cells. Brain 117(3), 531–543 (1994)Google Scholar
  93. 93.
    Liao, H., Mandal, M.K., Cockburn, B.F. Efficient architectures for 1D and 2D lifting-based wavelet transforms. IEEE Trans Signal Process 52(5) (May 2004)Google Scholar
  94. 94.
    Licht, S. Therapeutic Electricity and Ultraviolet Radiation. New Haven, E. Licht (1967)Google Scholar
  95. 95.
    Malmivuo, J., Plonsey, R. Bioelectromagnetism, Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)CrossRefGoogle Scholar
  96. 96.
    Manolakos, E.S., Stellakis, H.M. Systematic synthesis of parallel architectures for the computation of higher order cumulants. Parall Comput 26, 655–676 (2000)MATHCrossRefGoogle Scholar
  97. 97.
    Matteuci, C. Sur un phenomene physiologique produit par les muscles en contracion, Annales de Chimie et de Physique, 6(339) (1842)Google Scholar
  98. 98.
    McCulloch, W.S., Pitts, W.H. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5, 115–133 (1943)MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    McIntyre, C.C., Grill, W.M. Extracellular stimulation of central neurons: Influence of stimulus waveform and frequency on neuronal output. J Neurophysiol 88, 1592–1604 (2002)Google Scholar
  100. 100.
    McIntyre, C.C., Grill, W.M. Excitation of central nervous system neurons by nonuniform electric fields. Biophys J 76, 878–888 (Feb 1999)CrossRefGoogle Scholar
  101. 101.
    McIntyre, C.C., Thakor, N.V. Uncovering the mechanisms of deep brain stimulation for Parkinson's disease through functional imaging, neural recording and neural modeling. Crit Rev Biomed Eng 30(4–6), 249–281 (2002)CrossRefGoogle Scholar
  102. 102.
    Medtronic Corporation, Extension kit for deep brain stimulation, spinal cord stimulation, or peripheral nerve stimulation, implant manual, Medtronic, Inc. (2002)Google Scholar
  103. 103.
    Meissimilly, G., Rodriguez, J., Rodriguez, G., Gonzalez, R., Canizares, M. Microcontroller-based real-time QRS detector for ambulatory monitoring. Proc IEEE Eng Med Biol Soc 3, 17–21 (2003)Google Scholar
  104. 104.
    Micheli-Tzanakou, E., Hamilton, J., Zheng, J., Lehman, R. Computational intelligence for target assessment in Parkinson's disease. In: Bosacchi, B., Fogel, D.B., Bezdek, J.C. (eds.) Proceedings of the SPIE, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation IV, Vol. 4479, pp. 54–69. SPIE-Medical Imaging (2001)Google Scholar
  105. 105.
    Micheli-Tzanakou, E., Michalak, R., Harth, E. The Alopex process: Visual receptive fields with response feedback. Biol Cybern 35, 161–174 (1979)CrossRefGoogle Scholar
  106. 106.
    Montgomery, E.B., Jr., Baker, K.B. Mechanisms of deep brain stimulation and future technical developments. Neurol Res 22, 259–266 (2000)Google Scholar
  107. 107.
    Moore, G.E. Cramming more components onto integrated circuits. Electronics 38(8) (1965)Google Scholar
  108. 108.
    Moxon, K.A., Kalkhoran, N.M., Markert, M., Sambito, M.A., McKenzie, J.L., Webster, J.T. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. IEEE Trans Biomed Eng 51(6) (June 2004)Google Scholar
  109. 109.
    Mraz, S.J. Rewiring the retina. Machine Design 75(13), 60–64 (Jul 10, 2003)Google Scholar
  110. 110.
    Muenter, M.D., Tyce, G.M. l-dopa therapy of Parkinson's disease: Plasma l-dopa concentration, therapeutic response, and side effects. Mayo Clin Proc 46, 231–239 (1971)Google Scholar
  111. 111.
    Nicolelis, M.A.L. Brain machine interfaces to restore motor function and probe neural circuits. Nat Rev Neurosci 4(5), 417–422 (2003)CrossRefGoogle Scholar
  112. 112.
    Noble, D. A modification of the Hodgkin-Huxley equations applicable to purkinje fibre action and pacemaker potentials. J Physiol 160, 317–352 (1962)Google Scholar
  113. 113.
    Novo, A., Gerosa, A., Neviani, A. A sub-micron CMOS programmable charge pump for implantable pacemaker. Analog Integrated Circuits Signal Process 27, 211–217 (2001)CrossRefGoogle Scholar
  114. 114.
    Noyce, R.N. Semiconductor device-and-lead structure, US Patent # 2981877, 1961.Google Scholar
  115. 115.
    Nutt, J., Anderson, V.C., Peacock, J.H., Hammerstad, J.P., Burchiel, K.J. DBS and diathermy interaction induces severe CNS damage. Neurology 56, 1384–1386 (2001)CrossRefGoogle Scholar
  116. 116.
    Pardo, M., Sberveglieri, G. Learning from data: A tutorial with emphasis on modern pattern recognition methods. IEEE Sens J 2(3), 203–217 (2002)CrossRefGoogle Scholar
  117. 117.
    Patterson, W.R., Song, Y., Bull, C.W., Ozden, I., Deangellis, A.P., Lay, C., McKay, J.L., Nurmikko, A.V., Donoghue, J.D., Connors, B.W. A microelectrode/ microelectronic hybrid device for brain implantable neuroprosthesis applications. IEEE Trans Biomed Eng 51(10) (Oct 2004)Google Scholar
  118. 118.
    Peng, H., Long, F., Ding, C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8), 1226 (2005)CrossRefGoogle Scholar
  119. 119.
    Pea, C., Bowsher, K., Costello, A., De Luca, R., Doll, S., Li, K., Schroeder, M., Stevens, T. An overview of FDA medical device regulation as it relates to deep brain stimulation devices. IEEE Trans Neural Syst Rehabil Eng 15(3), 421–424 (2007)CrossRefGoogle Scholar
  120. 120.
    Plenz, D., Kitai, S. A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400, 677–682 (1999)CrossRefGoogle Scholar
  121. 121.
    Priestley, J. The history and present state of electricity: With original experiments. Printed for C. Bathurst, and T. Lowndes … J. Rivington, and J. Johnson … S. Crowder, G. Robinson, and R. Baldwin … T. Becket, and T. Cadell …, London, MDCCLXXV (1775)Google Scholar
  122. 122.
    Pudil, P., Novovicova, J., Somol, P. Feature selection toolbox software package. Pattern Recognit Lett 23, 487–492 (2002)MATHCrossRefGoogle Scholar
  123. 123.
    Eckmiller, R., Eckhorn, R. Final report of the feasibility study for a neurotechnology program, NeuroTechnology Report, BMBF, Bonn, Germany (1994)Google Scholar
  124. 124.
    Rajasekaran, S. Efficient parallel algorithms for template matching. Parallel Process Lett 12(3–4), 359–364 (2002)MathSciNetCrossRefGoogle Scholar
  125. 125.
    Rall, W., Burke, R.E., Holmes, W.R., Jack, J.J., Redman, S.J., Segev, I. Matching dendritic neuron models to experimental data. Physiol Rev 72(4) (Suppl), S159–S86 (1992)Google Scholar
  126. 126.
    Raz, A., Vaadia, E., Bergman, H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci 20(22), 8559–8571 (Nov 15, 2000)Google Scholar
  127. 127.
    Rise, M.T., King, G.W. Method of treating movement disorders by brain stimulation, US Patent #5716377 (1998)Google Scholar
  128. 128.
    Rodrigues, J.N., Owall, V., Sornmo, L. A wavelet based R-wave detector for cardiac pacemakers in 0.35 CMOS technology, IEEE Circuits Syst Proc (ISCAS) 4, 23–26 (2004)Google Scholar
  129. 129.
    Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol Rev 65(6), 386–408 (1958)MathSciNetCrossRefGoogle Scholar
  130. 130.
    Rossi, L., Marceglia, S., Foffani, G., Cogiamanian, F., Tamma, F., Rampini, P., Barbieri, S., Bracchi, F., Priori, A. Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson's disease. Brain Res Bull 76(5), 512–521 (2008)CrossRefGoogle Scholar
  131. 131.
    Ruggera, P.S., Witters, D.M., Maltzahn, G., Bassen, H.I. In vitro assessment of tissue heating near metallic medical implants by exposure to pulsed radio frequency diathermy. Phys Med Biol 48, 2919–2928 (2003)CrossRefGoogle Scholar
  132. 132.
    Sanchez, J.C., Sung-Phil, K., Erdogmus, D., Rao, Y.N., Principe, J.C., Wessberg, J., Nicolelis, M. Input-output mapping performance of linear and nonlinear models for estimating hand trajectories from cortical neuronal firing patterns. Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, 4–6, 139–148 (Sep. 2002)Google Scholar
  133. 133.
    Sanders, R.S., Lee, M.T. Implantable pacemakers. Proc IEEE 84(3), 480–486 (March 1996)CrossRefGoogle Scholar
  134. 134.
    Sanghavi, T. Design of an alopex architecture and its application to adaptive deep brain stimulation (ADBS), Rutgers theses. Graduate Program in Electrical and Computer Engineering (2005)Google Scholar
  135. 135.
    Sastry, P.S., Magesh, M., Unnikrishnan, K.P. Two timescale analysis of the ALOPEX algorithm for optimization. Neural Comput, 14, 2729–2750 (2002)MATHCrossRefGoogle Scholar
  136. 136.
    Scharstein, H. Input–output relationship of the leaky-integrator neuronmodel. J Math Biol 8(4), 403–420 (1979)MathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    Schueler, B.A., Parrish, T.B., Lin, J., Hammer, B.E., Pangrle, B.J., Ritenour, E.R., Kucharczyk, J., Truwit, C.L. MRI compatibility and visibility assessment of implantable medical devices. J Mag Res Imaging 9, 596–603 (1999)CrossRefGoogle Scholar
  138. 138.
    Schweigger, J.S.C. Zustze zu ersteds elektromagnetischen versuchen, vorgelesen in der naturforschenden. Journal fr Chemie und Physik, Schweigger Ed. 31(1–17), 431 (1821)Google Scholar
  139. 139.
    Scribonius, L. Compositiones. In: Sergio Sconocchia (ed.) Scribonii Largi Compositiones. Teubner, Leipzig (1983)Google Scholar
  140. 140.
    Sejnowski, T.J. The book of Hebb. Neuron 24, 773–776 (1999)CrossRefGoogle Scholar
  141. 141.
    Shinomoto, S., Kuramoto, Y. Phase transitions in active rotator systems. Prog Theor Phys 75, 1105–1110 (1986)CrossRefGoogle Scholar
  142. 142.
    Sridhar, A. Analog CMOS Model of Parkinson's Disease, Thesis (M.S.), Rutgers University (2005)Google Scholar
  143. 143.
    Stein, R.B. A theoretical analysis of neuronal variability. Biophys J 5, 173–194 (1965)CrossRefGoogle Scholar
  144. 144.
    Struijk, J.J. Thomsen, M., Larsen, J.O. Sinkjaer, T. Cuff electrodes for longterm recording of natural sensory information. IEEE Eng Med Biol Mag 18(3), pp. 91–98 (1999)CrossRefGoogle Scholar
  145. 145.
    Suri, R.E. Albani, C., Glattfelder, A.H. A dynamic model of motor basal ganglia functions. Biol Cybern 76(6), 451–458 (1997)MATHCrossRefGoogle Scholar
  146. 146.
    Tass, P.A. Amodel of desynchronizing deep brain stimulation with a demand controlled coordinated reset of neural subpopulations. Biol Cybern 89(2), 81–88 (August 2003)MATHCrossRefGoogle Scholar
  147. 147.
    Tass, P.A. Effective desynchronization with bipolar double-pulse stimulation. Phys Rev E 66, 036226 (2002)Google Scholar
  148. 148.
    Taylor JG, Taylor NR. Analysis of recurrent cortico-basal ganglia-thalamic loops for working memory. Biol Cybern 82(5), 415–432 (2000)MATHCrossRefGoogle Scholar
  149. 149.
    Terman, D., Rubin, J.E., Yew, A.C., Wilson, C.J. Activity patterns in a model for the Subthalamopallidal Network of the Basal Ganglia. J Neurosci 22, 2963–2976 (2002)Google Scholar
  150. 150.
    Tzanakou, E., Harth, E. Determination of visual receptive fields by stochastic methods. Biophys J 15, 42a (1973)Google Scholar
  151. 151.
    U.S. Department of Health and Human Services. FDA approves implanted brain stimulator to control tremor, Press Release P97–24 (August 4, 1997)Google Scholar
  152. 152.
    Volkmann, J., Herzog, J., Kopper, F., Deuschl, G. Introduction to the programming of deep brain stimulators. Mov Dis 17(Suppl. 3), S181–S187 (2002)Google Scholar
  153. 153.
    Volta, A. On the electricity excited by the mere contact of conducting substances of different kinds. Philosophical Trans 90, part 2, 403–431, with one folding engraved plate, numbered XVII, (1800)Google Scholar
  154. 154.
    Warman, E.N., Grill, W.M., Durand, D. Modeling the effects of electric fields on nerve fibers: Determination of excitation thresholds. IEEE Trans Biomed Eng, 39(12) (Dec. 1992)Google Scholar
  155. 155.
    Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., Nicolelis, M.A.L. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365 (November 16, 2000)CrossRefGoogle Scholar
  156. 156.
    Wichman, T., DeLong, M.R. Pathophysiology of Parkinsons disease: The MPTP primate model of the human disorder. Ann NY Acad Sci 991, 199–213 (2003)CrossRefGoogle Scholar
  157. 157.
    Wilson, H.R. Simplified dynamics of human and mammalian neocortical neurons. J Theor Biol 200, 375–388 (1999)CrossRefGoogle Scholar
  158. 158.
    Wingeier, B., Tcheng, T., Koop, M.M., Hill, B.C., Heit, G., Bronte-Stewart, H.M. Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson's disease. Exp Neurol 197, 244–251 (2006)CrossRefGoogle Scholar
  159. 159.
    Wise, K.D., Anderson, D.J., Hetke, J.F., Kipke, D.R., Najafi, N. Wireless implantable microsystems: High-density electronic interfaces to the nervous system. Proc IEEE 92(1) ( January 2004)Google Scholar
  160. 160.
    Wolpert, S., Micheli-Tzanakou, E. A neuromime in VLSI. IEEE Trans Neural Netw 7(2) (March 1996)Google Scholar
  161. 161.
    Wu, W., Black, M.J., Gao, Y., Bienenstock, E., Serruya, M., Shaikhouni, A., Donoghue, J.P. Neural decoding of cursor motion using Kalman filtering. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, Vol. 15, pp.117–124. MIT Press, Cambridge (2003)Google Scholar
  162. 162.
    Wu, Y.R., Levy, R., Ashby, P., Tasker, R.R., Dostrovsky, J.O. Does stimulation of the GPI control dyskinesia by activating inhibitory axons? Mov Dis 16(2), 208–216 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Rutgers UniversityPiscatawayUSA

Personalised recommendations