Advertisement

Neural Network Modeling of Voluntary Single-Joint Movement Organization II. Parkinson’s Disease

  • Vassilis Cutsuridis
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 38)

Abstract

The organization of voluntary movement is disrupted in Parkinson's disease. The neural network models of voluntary movement preparation and execution presented in the previous chapter are extended here by studying the effects of dopamine depletion in the output of the basal ganglia and in key neuronal types in the cortex and spinal cord. The resulting extended DA–VITE–FLETE model offers an integrative perspective on corticospinal control of Parkinsonian voluntary movement. The model accounts for most of the known empirical signatures of Parkinsonian willful action.

Keywords

Ventral Tegmental Area Primary Motor Cortex Globus Pallidus Internal Dopamine Depletion Neuronal Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Albin, R., Young, A., Penney, J. The functional anatomy of basal ganglia disorders. Trends Neurosci 12, 366–375 (1989)CrossRefGoogle Scholar
  2. 2.
    Benazzouz, A., Gross, C., Dupont, J., Bioulac, B. MPTP induced hemiparkinsonism in monkeys: Behavioral, mechanographic, electromyographic and immunohistochemical studies. Exp Brain Res 90, 116–120 (1992)CrossRefGoogle Scholar
  3. 3.
    Benecke, R., Rothwell, J., Dick, J. Performance of simultaneous movements in patients with Parkinson's disease. Brain 109, 739–757 (1986)CrossRefGoogle Scholar
  4. 4.
    Berardelli, A., Dick, J., Rothwell, J., Day, B., Marsden, C. Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson's disease. J Neurol Neurosurg Psych 49, 1273–1279 (1986)CrossRefGoogle Scholar
  5. 5.
    Berger, B., Trottier, S., Verney, C., Gaspar, P., Alvarez, C. Regional and laminar distribution of dopamine and serotonin innervation in the macaque cerebral cortex: A radioautographic study. J Comp Neurol 273, 99–119 (1988)CrossRefGoogle Scholar
  6. 6.
    Bjorklund, A., Lindvall, O. Dopamine containing systems in the CNS. Classical Transmitters in the CNS: Part 1, Handbook of Chemical Neuroanatomy, Vol. 2, pp. 55–121. Elsevier, Amsterdam (1984)Google Scholar
  7. 7.
    Bjorklund, A., Skagerberg, G. Evidence of a major spinal cord projection from the diencephalic A11 dopamine cell group in the rat using transmitter-specific fluoroscence retrograde tracing. Brain Res 177, 170–175 (1979)CrossRefGoogle Scholar
  8. 8.
    Blessing, W., Chalmers, J. Direct projection of catecholamine (presumably dopamine)-containing neurons from the hypothalamus to spinal cord. Neurosci Lett 11, 35–40 (1979)CrossRefGoogle Scholar
  9. 9.
    Brown, S., Cooke, J. Initial agonist burst duration depends on movement amplitude. Exp Brain Res 55, 523–527 (1984)CrossRefGoogle Scholar
  10. 10.
    Brown, S., Cooke, J. Movement related phasic muscle activation I. Relations with temporal profile of movement. J Neurophys 63(3), 455–464 (1990)Google Scholar
  11. 11.
    Brown, S., Cooke, J. Movement related phasicmuscle activation II. Generation and functional role of the triphasic pattern. J Neurophysiol 63(3), 465–472 (1990)Google Scholar
  12. 12.
    Burns, R., Chiueh, C., Markey, S., Ebert, M., Jacobowitz, D., Kopin, I. A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by n-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80, 4546–4550 (1983)CrossRefGoogle Scholar
  13. 13.
    Camarata, P., Parker, R., Park, S., Haines, S., Turner, D., Chae, H., Ebner, T. Effects of MPTP induced hemiparkinsonism on the kinematics of a twodimensional, multi-joint arm movement in the rhesus monkey. Neuroscience 48(3), 607–619 (1992)CrossRefGoogle Scholar
  14. 14.
    Carlsson, A., Lindquist, M., Magnusson, T. 3,4-dihydroxyphenylalanine and 5-hydroxytryp- tophan as reserpine antagonists. Nature 180, 1200 (1957)CrossRefGoogle Scholar
  15. 15.
    Commissiong, J., Gentleman, S., Neff, N. Spinal cord dopaminergic neurons: Evidence for an uncrossed nigrostriatal pathway. Neuropharmacology 18, 565–568 (1979)CrossRefGoogle Scholar
  16. 16.
    Connor, N., Abbs, J. Task-dependent variations in parkinsonianmotor impairments. Brain 114, 321–332 (1991)Google Scholar
  17. 17.
    Corcos, D., Jaric, S., Gottlieb, G. Electromyographic analysis of performance enhancement. Advances in Motor Learning and Control. Human Kinetics, Champaign, IL (1996)Google Scholar
  18. 18.
    Cutsuridis, V. Neural model of dopaminergic control of arm movements in Parkinson's disease Bradykinesia. Artificial Neural Networks, LNCS, Vol. 4131, pp. 583–591. Springer-Verlag, Berlin (2006)Google Scholar
  19. 19.
    Cutsuridis, V. Biologically inspired neural architectures of voluntary movement in normal and disordered states of the brain. Ph.D. Thesis (2006). Unpublished Ph.D. dissertation. http://www.cs.stir.ac.uk/ vcu/papers/PhD.pdf
  20. 20.
    Cutsuridis, V. Does reduced spinal reciprocal inhibition lead to co-contraction of antagonist motor units? a modeling study. Int J Neural Syst 17(4), 319–327 (2007)CrossRefGoogle Scholar
  21. 21.
    Cutsuridis, V., Perantonis, S. A neural model of Parkinson's disease bradykinesia. Neural Netw 19(4), 354–374 (2006)MATHCrossRefGoogle Scholar
  22. 22.
    Davis, G., Williams, A., Markey, S., Ebert, M., Calne, E., Reichert, C., Kopin, I. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatr Res 1, 249–254 (1979)CrossRefGoogle Scholar
  23. 23.
    Doudet, D., Gross, C., Arluison, M., Bioulac, B. Modifications of precentral cortex discharge and EMG activity in monkeys with MPTP induced lesions of DA nigral lesions. Exp Brain Res 80, 177–188 (1990)CrossRefGoogle Scholar
  24. 24.
    Doudet, D., Gross, C., Lebrun-Grandie, P., Bioulac, B. MPTP primate model of Parkinson's disease: A mechanographic and electromyographic study. Brain Res 335, 194–199 (1985)CrossRefGoogle Scholar
  25. 25.
    Elsworth, J., Deutch, A., Redmond, D., Sladek, J., Roth, R. MPTP reduces dopamine and norepinephrine concentrations in the supplementary motor area and cingulate cortex of the primate. Neurosci Lett 114, 316–322 (1990)CrossRefGoogle Scholar
  26. 26.
    Flowers, K. Visual “closed-loop” and “open-loop” characteristics of voluntary movement in patients with parkinsonism and intention tremor. Brain 99(2), 269–310 (1976)CrossRefGoogle Scholar
  27. 27.
    Gaspar, P., Duyckaerts, C., Alvarez, C., Javoy-Agid, F., Berger, B. Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson's disease. Ann Neurol 30, 365–374 (1991)CrossRefGoogle Scholar
  28. 28.
    Gaspar, P., Stepniewska, I., Kaas, J. Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. J Comp Neurol 325, 1–21 (1992)CrossRefGoogle Scholar
  29. 29.
    Ghez, C., Gordon, J. Trajectory control in targeted force impulses. I. Role in opposing muscles. Exp Brain Res 67, 225–240 (1987)CrossRefGoogle Scholar
  30. 30.
    Ghez, C., Gordon, J. Trajectory control in targeted force impulses. II. Pulse height control. Exp Brain Res 67, 241–252 (1987)CrossRefGoogle Scholar
  31. 31.
    Ghez, C., Gordon, J. Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors. Exp Brain Res 67, 253–269 (1987)CrossRefGoogle Scholar
  32. 32.
    Gibb, W., Lees, A., Jenner, P., Marsden, C. MPTP: Effects of MPTP in the mid-brain of marmoset. A Neurotoxin Producing A Parkinsonian Syndrome, pp. 607–614. Academic Press, New York (1986)Google Scholar
  33. 33.
    Gibberd, F. The management of Parkinson's disease. Practitioner 230, 139–146 (1986)Google Scholar
  34. 34.
    Godaux, E., Koulischer, D., Jacquy, J. Parkinsonian bradykinesia is due to depression in the rate of rise of muscle activity. Ann Neurol 31(1), 93–100 (1992)CrossRefGoogle Scholar
  35. 35.
    Gottlieb, G., Latash, M., Corcos, D., Liubinskas, A., Agarwal, G. Organizing principle for single joint movements: I. agonist-antagonist interactions. J Neurophys 13(6), 1417–1427 (1992)Google Scholar
  36. 36.
    Gross, C., Feger, J., Seal, J., Haramburu, P., Bioulac, B. Neuronal activity of area 4 and movement parameters recorded in trained monkeys after unilateral lesion of the substantia nigra. Exp Brain Res Suppl. 7, 181–193 (1983)CrossRefGoogle Scholar
  37. 37.
    Hallett, M., Khoshbin, S. A physiological mechanism of bradykinesia. Brain 103, 301–314 (1980)CrossRefGoogle Scholar
  38. 38.
    Hallett, M., Marsden, G. Ballistic flexion movements of the human thumb. J Physiol 294, 33–50 (1979)Google Scholar
  39. 39.
    Hallett, M., Shahani, B., Young, R. EMG analysis of stereotyped voluntary movements. J Neurol Neurosurg Psychiatr 38, 1154–62 (1975)Google Scholar
  40. 40.
    Hayashi, A., Kagamihara, Y., Nakajima, Y., Narabayashi, H., Okuma, Y., Tanaka, R. Disorder in reciprocal innervation upon initiation of voluntary movement in patients with Parkinson's disease. Exp Brain Res 70, 437–440 (1988)CrossRefGoogle Scholar
  41. 41.
    Lazarus, J., Stelmach, G. Inter-limb coordination in Parkinson's disease. Mov Disord 7, 159–170 (1992)CrossRefGoogle Scholar
  42. 42.
    Lewis, D., Morrison, J., Goldstein, M. Brainstem dopaminergic neurons project to monkey parietal cortex. Neurosci Lett 86, 11–16 (1988)CrossRefGoogle Scholar
  43. 43.
    Lidow, M., Goldman-Rakic, P., Gallager, D., Geschwind, D., Rakic, P. Distribution of major neurotransmitter receptors in the motor and somatosensory cortex of the rhesus monkey. Neuroscience 32(3), 609–627 (1989)CrossRefGoogle Scholar
  44. 44.
    Pifl, C., Bertel, O., Schingnitz, G., Hornykiewitz, O. Extrastriatal dopamine in symptomatic and asymptotic rhesus monkey treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurochem Int 17, 263–270 (1990)CrossRefGoogle Scholar
  45. 45.
    Rand, M., Stelmach, G., Bloedel, J. Movement accuracy constraints in Parkinson's disease patients. Neuropsychologia 38, 203–212 (2000)CrossRefGoogle Scholar
  46. 46.
    Scatton, B., Javoy-Agid, F., Rouquier, L., Dubois, B., Agid, Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Res 275, 321–328 (1983)CrossRefGoogle Scholar
  47. 47.
    Shirouzou, M., Anraku, T., Iwashita, Y., Yoshida, M. A new dopaminergic terminal plexus in the ventral horn of the rat spinal cord. Immunohistochemical studies at the light and the electron microscopic levels. Experientia 46, 201–204 (1990)CrossRefGoogle Scholar
  48. 48.
    Stelmach, G., Teasdale, N., Phillips, J., Worringham, C. Force production characteristics in parkinson's disease. Exp Brain Res 76, 165–172 (1989)CrossRefGoogle Scholar
  49. 49.
    Tremblay, L., Filion, M., Bedard, P. Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain Res 498(1), 17–33 (1989)CrossRefGoogle Scholar
  50. 50.
    Watts, R., Mandir, A. The role of motor cortex in the pathophysiology of voluntary movement deficits associated with parkinsonism. Neurol Clin 10(2), 451–469 (1992)Google Scholar
  51. 51.
    Weil-Fugazza, J., Godefroy, F. Dorsal and ventral dopaminergic innervation of the spinal cord: Functional implications. Brain Res Bull 30, 319–324 (1993)CrossRefGoogle Scholar
  52. 52.
    Weiss, P., Stelmach, G., Adler, C., Waterman, C. Parkinsonian arm movements as altered by task difficulty. Parkinsonism Relat Disord 2(4), 215–223 (1996)CrossRefGoogle Scholar
  53. 53.
    Wierzbicka,M.,Wiegner, A., Shahani, B. Role of agonist and antagonistmuscles in fast arm movements. Exp Brain Res 63, 331–340 (1986)CrossRefGoogle Scholar
  54. 54.
    Williams, S., Goldman-Rakic, P. Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8, 321–345 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Centre for Memory and BrainBoston UniversityBostonUSA

Personalised recommendations