Skip to main content

The Design of Dynamical Inquiring Systems: A Certainty Equivalent Formalization

  • Chapter
  • First Online:
Book cover Sensors: Theory, Algorithms, and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 61))

  • 1801 Accesses

Abstract

Dynamical systems include measuring sensor inputs of phenomena to yield accurate predictions of the evolving sensor outputs or to determine optimal control management policies based on sensor data. The input and output sets of the system may be generalized and transformed with respect to the sets of sensors available and formal deductive methods and chaos theory may be formulated to obtain Dynamical Inquiring Systems over a horizon to yield solutions which will be precise and be certainty equivalent to the future results of the phenomenon.The aim of this chapter is to present a formalization of Mathematical Systems Theory to demonstrate the theoretical basis of nonlinear dynamical chaotic systems solved by simultaneous estimation and optimal control processes and to present accurate predictions based on generalized sensor data of many forms both in input and output such as dynamic malfunctioning of systems including engineering, medical, economic, and environmental inquiring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. L. Ackoff and F. E. Emery. On Purposeful Systems. Aldine, Chicago, 1972.

    Google Scholar 

  2. F. Bartolozzi, A. De Gaetano, E. Di Lena, S. Marino, L. Nieddu, and G. Patrizi. Operational research techniques in medical treatment and diognosis: A review. European Journal Of Operational Research, 121:435–466, 2000.

    MATH  Google Scholar 

  3. E. W. Beth. Foundations of Mathematics. North-Holland, Amseterdam, 1959.

    MATH  Google Scholar 

  4. R. B. Braithwaite. Scientific Explanation: A Study of the Function of Theory, Probability, and Law in Science. Cambridge University Press, Cambridge, 1953.

    MATH  Google Scholar 

  5. C. Cheng and H. Tong. On consistent non-parametric order determination and chaos. Journal of R. Statistical Soc., series B, 54:427–449, 1992.

    MATH  Google Scholar 

  6. C. W. Churchman. The Design of Inquiring Systems: Basic Concepts of Systems and Organization. Basic Books, New York, 1971.

    Google Scholar 

  7. H. Cramer. Mathematical Methods in Statistics. Princeton University Press, Princeton, 1945.

    Google Scholar 

  8. J. W. Dawson Jr. Logical Dilemmas: The Life and Work of Kurt Gödel. A. K. Peters., Wellesley MA, 1997.

    MATH  Google Scholar 

  9. René Descartes. Oevres édition Charles Adam, Paul Tannery, Lépold Cerf. Vrin-CNRS (édition de référence (11 volumes), Paris, 1964–1974.

    Google Scholar 

  10. L. Di Giacomo, E. Di Lena, G. Patrizi, L. Pomaranzi, and F. Sensi. C.a.s.s.a.n.d.r.a. computerized analysis for supply chain distribution activity. In L. Bertazzi, M. G. Speranza, and J. Van Nunen, editors, Innovations in Distribution Logistics. Springer, Berlin, 2009.

    Google Scholar 

  11. L. Di Giacomo and G. Patrizi. Dynamic nonlinear modelization of operational supply chain systems. Journal of Global Optimization, 34:503–534, 2006.

    MathSciNet  MATH  Google Scholar 

  12. L. Di Giacomo and G. Patrizi. Optimal dynamic nonlinear prediction methods for management of financial instruments. Technical report, Dipartimento di Statistica, Probabilita e Statistiche Applicate, Universita di Roma, La Sapienza, Rome, 2006.

    Google Scholar 

  13. L. Di Giacomo and G. Patrizi. Methodological analysis of supply chain management applications. European Journal of Operational Research, 207:249–257, 2010.

    Google Scholar 

  14. L. Di Sopra and G. Patrizi. The application of o.r. techniques for the prediction and understanding of damages caused by seismic events. European Journal of Operational Research, 28:180–195, 1987.

    Google Scholar 

  15. J Dieudonné. Fondaments d’Analyse. Gauthiers Villars, Paris, 1960, vol. 1.

    Google Scholar 

  16. C. Diks. Nonlinear Time Series Analysis. World Scientific, Singapore, 1999.

    MATH  Google Scholar 

  17. J.-P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Review of Modern Physics, 57:617–656, 1985.

    MathSciNet  MATH  Google Scholar 

  18. F. Suppe (ed.). The Structure of Scientific Theories. University of Illinois Press, Urbana, 1974.

    Google Scholar 

  19. S. N. Elaydi. Discrete Chaos. Chapman and Hall CRC press, London, 1999.

    MATH  Google Scholar 

  20. G. A. Gottwald and I Melbourne. Testing for chaos in deterministic systems with noise. Physica D, 212:100–110, 2005.

    MathSciNet  MATH  Google Scholar 

  21. G. Grimaldi, C. Manna, L. Nieddu, G. Patrizi, and P. Simonazzi. A diagnostic decision support system and its application to the choice of suitable embryos in human assisted reproduction. Central European Journal Of Operational Research, 10(1):29–44, 2002.

    MATH  Google Scholar 

  22. S. Haberman. The Analysis of Frequency Data. The University of Chicago press, Chicago, 1974.

    MATH  Google Scholar 

  23. B. Hasselblatt and A. Katok. A First Course in Dynamics: with a Panorama of Recent Developments. University Press, Cambridge, 2003.

    MATH  Google Scholar 

  24. J. Hintikka. Lingua Universalis vs. Calculus Ratiocinator. An ultimate presupposition of Twentieth-century philosophy. Kluwer, Boston, 1997.

    Google Scholar 

  25. R. I. Jennrich. Asymptotic properties of non-linear least squares estimators. The Annals of Mathematical Statisitcs, 40:633–643, 1969.

    MathSciNet  MATH  Google Scholar 

  26. K. Judd. Forecasting with imperfect models, dynamically constrained inverse problems, and gradient descent agorithms. Physics D, 237:216–232, 2008.

    MathSciNet  MATH  Google Scholar 

  27. R. E. Kalman, P. L. Falb, and M. A. Arbib. Topics in Mathematical System Theory. McGraw-Hill, New York, 1969.

    MATH  Google Scholar 

  28. H. Kantz and Th. Schreiber. Nonlinear Time Series Analysis. University Press (2nd Edition), Cambridge, 1997.

    Google Scholar 

  29. E. Lorenz. Deterministic non-periodic flow. Journal of the Atmospheric Sciences, 20:130–141, 1963.

    MathSciNet  MATH  Google Scholar 

  30. E. Malinvaud. Méthodes Statistiques de l’ économétrie. Dunod, Paris, 3eme ed., 1978.

    MATH  Google Scholar 

  31. C. Manna, G. Patrizi, A. Rahman, and H. Sallam. Experimental results on the recognition of embryos in human assisted reproduction. Reproductive BioMedicine Online (www.rbmonline.com/Article/1170), 8(4):460–469, 2004.

  32. J. G. Miller. Living Systems. McGraw-Hill, New York, 1978.

    Google Scholar 

  33. A. H. Nayfeh and B. Balachandran. Applied Nonlinear Dynamics. Wiley, New York, 1995.

    MATH  Google Scholar 

  34. L. Nieddu and G. Patrizi. Formal properties of pattern recognition algorithms: A review. European Journal of Operational Research, 120:459–495, 2000.

    MATH  Google Scholar 

  35. P. Pardalos and V. A. Yatsenko. Optimization approach to the estimation and control of lyapunov exponents. Journal of Optimization Theory and Applications, 128:29–48, 2006.

    MathSciNet  MATH  Google Scholar 

  36. G. Patrizi. Model based selection of data arrays for inferences on large surveys. In R. Coppi and S. Bolasco, editors, Multiway Data Analysis, pp. 521–530, Amsterdam, 1989. North-Holland.

    Google Scholar 

  37. G. Patrizi. The equivalence of an lcp to a parametric linear program with a scalar parameter. European Journal of Operational Research, 51:367–386, 1991.

    MATH  Google Scholar 

  38. G. Patrizi. S.O.C.R.A.t.E.S.simultaneous optimal control by recursive and adaptive estimation system: Problem formulation and computational results. In M. Lassonde, editor, Optimization and Approximation, Vth International Conference on Approximation and Optimization in the Carribean, pp. 245–253. Physika- Verlag, Heidelberg, 2001.

    MATH  Google Scholar 

  39. G. Patrizi, G. Addonisio, C. Giannakakis, A. Onetti Muda, Gr. Patrizi, and T. Faraggiana. Diagnosis of alport syndrome by pattern recognition techniques. In P. M. Pardalos, V. L. Boginski, and A. Vazacopoulos, editors, Data Mining in Biomedicine, pp. 209–230. Springer, Berlin, 2007.

    Google Scholar 

  40. G. Patrizi and C. Cifarelli. Solving large protein secondary structure classification problems by a nonlinear complementarity algorithm with {0,1} variables. Optimization and Software, 22: 25–49, 2007.

    MathSciNet  MATH  Google Scholar 

  41. G. Patrizi, C. Manna, C. Moscatelli, and L. Nieddu. Pattern recognition methods in human assisted reproduction. International Transactions in Operational Research, 11:365–379, 2004.

    MATH  Google Scholar 

  42. G. Patrizi, Gr. Patrizi, L. Di Cioccio, and C. Bauco. Clinical analysis of the diagnostic classification of geriatric disorders. In P. M. Pardalos, V. L. Boginski, and A. Vazacopoulos, editors, Data Mining in Biomedicine, pp. 231–260. Springer, Berlin, 2007.

    Google Scholar 

  43. J. Pfanzagl. Theory of Measurement. Physica-Verlag, Wien, 1971.

    MATH  Google Scholar 

  44. H. A. Simon. Dynamic programming under uncertainty with a quadratic criterion function. Econometrica, 24: 74–81, 1956.

    MathSciNet  MATH  Google Scholar 

  45. T. Söderström and P. Stoica. System Identification. Prentice-Hall, Englewood Cliffs, N.J., 1989.

    MATH  Google Scholar 

  46. Baruch Spinoza. Tractatus Theologico-Politicus. Henricum Künraht, Hamburg, 1670.

    Google Scholar 

  47. F. Takens. Detecting strange attractors in turbulance. In D. A. Rand and L.S. Young, editors, Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer, New York, 1981.

    Google Scholar 

  48. F. Takens. Invariants related to dimension and entropy. Ats do 13 Colloquio Brasileito de Matematica, Istituto de Matematica Pura e Applicada, Rio de Janeiro, pp. 1–23, 1983.

    Google Scholar 

  49. H. Theil. A note on certainty equivalence in dynamic programming. Econometrica, 25: 346–349, 1957.

    MathSciNet  MATH  Google Scholar 

  50. M. Vellekoop and R. Berglund. On intervals transitivity  = chaos. The American Mathematical Monthly, 101: 353–355, 1994.

    MathSciNet  MATH  Google Scholar 

  51. L. von Bertalanffy. General Systems Theory. Braziller, New York, 1974.

    Google Scholar 

  52. J. Warga. Optimal Control of Differential and Functional Equations. Academic Press, New York, 1972.

    MATH  Google Scholar 

  53. G: M. Weinberg. An Introduction to general System Theory. Wiley, New York, 1975.

    Google Scholar 

  54. Charlotte Werndl. Are deterministic descriptions and indeterministic descriptions observationally equivalent? Studies in History and Philosophy of Modern Physics, 40: 232–242, 2009.

    MathSciNet  MATH  Google Scholar 

  55. Charlotte Werndl. What are the new implications of chaos for unpredictability? The British Journal for the Philosophy of Science, 60: 195–220, 2009.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Patrizi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Di Giacomo, L., Patrizi, G. (2012). The Design of Dynamical Inquiring Systems: A Certainty Equivalent Formalization. In: Boginski, V.L., Commander, C.W., Pardalos, P.M., Ye, Y. (eds) Sensors: Theory, Algorithms, and Applications. Springer Optimization and Its Applications(), vol 61. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88619-0_6

Download citation

Publish with us

Policies and ethics