The Design of Dynamical Inquiring Systems: A Certainty Equivalent Formalization

Part of the Springer Optimization and Its Applications book series (SOIA, volume 61)


Dynamical systems include measuring sensor inputs of phenomena to yield accurate predictions of the evolving sensor outputs or to determine optimal control management policies based on sensor data. The input and output sets of the system may be generalized and transformed with respect to the sets of sensors available and formal deductive methods and chaos theory may be formulated to obtain Dynamical Inquiring Systems over a horizon to yield solutions which will be precise and be certainty equivalent to the future results of the phenomenon.The aim of this chapter is to present a formalization of Mathematical Systems Theory to demonstrate the theoretical basis of nonlinear dynamical chaotic systems solved by simultaneous estimation and optimal control processes and to present accurate predictions based on generalized sensor data of many forms both in input and output such as dynamic malfunctioning of systems including engineering, medical, economic, and environmental inquiring systems.


Complementarity Problem Linear Complementarity Problem Nonlinear Complementarity Problem Certainty Equivalent Alport Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. L. Ackoff and F. E. Emery. On Purposeful Systems. Aldine, Chicago, 1972.Google Scholar
  2. 2.
    F. Bartolozzi, A. De Gaetano, E. Di Lena, S. Marino, L. Nieddu, and G. Patrizi. Operational research techniques in medical treatment and diognosis: A review. European Journal Of Operational Research, 121:435–466, 2000.MATHCrossRefGoogle Scholar
  3. 3.
    E. W. Beth. Foundations of Mathematics. North-Holland, Amseterdam, 1959.MATHGoogle Scholar
  4. 4.
    R. B. Braithwaite. Scientific Explanation: A Study of the Function of Theory, Probability, and Law in Science. Cambridge University Press, Cambridge, 1953.MATHGoogle Scholar
  5. 5.
    C. Cheng and H. Tong. On consistent non-parametric order determination and chaos. Journal of R. Statistical Soc., series B, 54:427–449, 1992.Google Scholar
  6. 6.
    C. W. Churchman. The Design of Inquiring Systems: Basic Concepts of Systems and Organization. Basic Books, New York, 1971.Google Scholar
  7. 7.
    H. Cramer. Mathematical Methods in Statistics. Princeton University Press, Princeton, 1945.Google Scholar
  8. 8.
    J. W. Dawson Jr. Logical Dilemmas: The Life and Work of Kurt Gödel. A. K. Peters., Wellesley MA, 1997.MATHGoogle Scholar
  9. 9.
    René Descartes. Oevres édition Charles Adam, Paul Tannery, Lépold Cerf. Vrin-CNRS (édition de référence (11 volumes), Paris, 1964–1974.Google Scholar
  10. 10.
    L. Di Giacomo, E. Di Lena, G. Patrizi, L. Pomaranzi, and F. Sensi. C.a.s.s.a.n.d.r.a. computerized analysis for supply chain distribution activity. In L. Bertazzi, M. G. Speranza, and J. Van Nunen, editors, Innovations in Distribution Logistics. Springer, Berlin, 2009.Google Scholar
  11. 11.
    L. Di Giacomo and G. Patrizi. Dynamic nonlinear modelization of operational supply chain systems. Journal of Global Optimization, 34:503–534, 2006.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    L. Di Giacomo and G. Patrizi. Optimal dynamic nonlinear prediction methods for management of financial instruments. Technical report, Dipartimento di Statistica, Probabilita e Statistiche Applicate, Universita di Roma, La Sapienza, Rome, 2006.Google Scholar
  13. 13.
    L. Di Giacomo and G. Patrizi. Methodological analysis of supply chain management applications. European Journal of Operational Research, 207:249–257, 2010.CrossRefGoogle Scholar
  14. 14.
    L. Di Sopra and G. Patrizi. The application of o.r. techniques for the prediction and understanding of damages caused by seismic events. European Journal of Operational Research, 28:180–195, 1987.Google Scholar
  15. 15.
    J Dieudonné. Fondaments d’Analyse. Gauthiers Villars, Paris, 1960, vol. 1.Google Scholar
  16. 16.
    C. Diks. Nonlinear Time Series Analysis. World Scientific, Singapore, 1999.MATHGoogle Scholar
  17. 17.
    J.-P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Review of Modern Physics, 57:617–656, 1985.MathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Suppe (ed.). The Structure of Scientific Theories. University of Illinois Press, Urbana, 1974.Google Scholar
  19. 19.
    S. N. Elaydi. Discrete Chaos. Chapman and Hall CRC press, London, 1999.Google Scholar
  20. 20.
    G. A. Gottwald and I Melbourne. Testing for chaos in deterministic systems with noise. Physica D, 212:100–110, 2005.Google Scholar
  21. 21.
    G. Grimaldi, C. Manna, L. Nieddu, G. Patrizi, and P. Simonazzi. A diagnostic decision support system and its application to the choice of suitable embryos in human assisted reproduction. Central European Journal Of Operational Research, 10(1):29–44, 2002.MATHGoogle Scholar
  22. 22.
    S. Haberman. The Analysis of Frequency Data. The University of Chicago press, Chicago, 1974.MATHGoogle Scholar
  23. 23.
    B. Hasselblatt and A. Katok. A First Course in Dynamics: with a Panorama of Recent Developments. University Press, Cambridge, 2003.MATHGoogle Scholar
  24. 24.
    J. Hintikka. Lingua Universalis vs. Calculus Ratiocinator. An ultimate presupposition of Twentieth-century philosophy. Kluwer, Boston, 1997.Google Scholar
  25. 25.
    R. I. Jennrich. Asymptotic properties of non-linear least squares estimators. The Annals of Mathematical Statisitcs, 40:633–643, 1969.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    K. Judd. Forecasting with imperfect models, dynamically constrained inverse problems, and gradient descent agorithms. Physics D, 237:216–232, 2008.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    R. E. Kalman, P. L. Falb, and M. A. Arbib. Topics in Mathematical System Theory. McGraw-Hill, New York, 1969.MATHGoogle Scholar
  28. 28.
    H. Kantz and Th. Schreiber. Nonlinear Time Series Analysis. University Press (2nd Edition), Cambridge, 1997.Google Scholar
  29. 29.
    E. Lorenz. Deterministic non-periodic flow. Journal of the Atmospheric Sciences, 20:130–141, 1963.CrossRefGoogle Scholar
  30. 30.
    E. Malinvaud. Méthodes Statistiques de l’ économétrie. Dunod, Paris, 3eme ed., 1978.MATHGoogle Scholar
  31. 31.
    C. Manna, G. Patrizi, A. Rahman, and H. Sallam. Experimental results on the recognition of embryos in human assisted reproduction. Reproductive BioMedicine Online (, 8(4):460–469, 2004.
  32. 32.
    J. G. Miller. Living Systems. McGraw-Hill, New York, 1978.Google Scholar
  33. 33.
    A. H. Nayfeh and B. Balachandran. Applied Nonlinear Dynamics. Wiley, New York, 1995.MATHCrossRefGoogle Scholar
  34. 34.
    L. Nieddu and G. Patrizi. Formal properties of pattern recognition algorithms: A review. European Journal of Operational Research, 120:459–495, 2000.MATHCrossRefGoogle Scholar
  35. 35.
    P. Pardalos and V. A. Yatsenko. Optimization approach to the estimation and control of lyapunov exponents. Journal of Optimization Theory and Applications, 128:29–48, 2006.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    G. Patrizi. Model based selection of data arrays for inferences on large surveys. In R. Coppi and S. Bolasco, editors, Multiway Data Analysis, pp. 521–530, Amsterdam, 1989. North-Holland.Google Scholar
  37. 37.
    G. Patrizi. The equivalence of an lcp to a parametric linear program with a scalar parameter. European Journal of Operational Research, 51:367–386, 1991.MATHCrossRefGoogle Scholar
  38. 38.
    G. Patrizi. S.O.C.R.A.t.E.S.simultaneous optimal control by recursive and adaptive estimation system: Problem formulation and computational results. In M. Lassonde, editor, Optimization and Approximation, Vth International Conference on Approximation and Optimization in the Carribean, pp. 245–253. Physika- Verlag, Heidelberg, 2001.CrossRefGoogle Scholar
  39. 39.
    G. Patrizi, G. Addonisio, C. Giannakakis, A. Onetti Muda, Gr. Patrizi, and T. Faraggiana. Diagnosis of alport syndrome by pattern recognition techniques. In P. M. Pardalos, V. L. Boginski, and A. Vazacopoulos, editors, Data Mining in Biomedicine, pp. 209–230. Springer, Berlin, 2007.Google Scholar
  40. 40.
    G. Patrizi and C. Cifarelli. Solving large protein secondary structure classification problems by a nonlinear complementarity algorithm with {0,1} variables. Optimization and Software, 22: 25–49, 2007.MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    G. Patrizi, C. Manna, C. Moscatelli, and L. Nieddu. Pattern recognition methods in human assisted reproduction. International Transactions in Operational Research, 11:365–379, 2004.MATHCrossRefGoogle Scholar
  42. 42.
    G. Patrizi, Gr. Patrizi, L. Di Cioccio, and C. Bauco. Clinical analysis of the diagnostic classification of geriatric disorders. In P. M. Pardalos, V. L. Boginski, and A. Vazacopoulos, editors, Data Mining in Biomedicine, pp. 231–260. Springer, Berlin, 2007.Google Scholar
  43. 43.
    J. Pfanzagl. Theory of Measurement. Physica-Verlag, Wien, 1971.MATHGoogle Scholar
  44. 44.
    H. A. Simon. Dynamic programming under uncertainty with a quadratic criterion function. Econometrica, 24: 74–81, 1956.MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    T. Söderström and P. Stoica. System Identification. Prentice-Hall, Englewood Cliffs, N.J., 1989.MATHGoogle Scholar
  46. 46.
    Baruch Spinoza. Tractatus Theologico-Politicus. Henricum Künraht, Hamburg, 1670.Google Scholar
  47. 47.
    F. Takens. Detecting strange attractors in turbulance. In D. A. Rand and L.S. Young, editors, Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer, New York, 1981.CrossRefGoogle Scholar
  48. 48.
    F. Takens. Invariants related to dimension and entropy. Ats do 13 Colloquio Brasileito de Matematica, Istituto de Matematica Pura e Applicada, Rio de Janeiro, pp. 1–23, 1983.Google Scholar
  49. 49.
    H. Theil. A note on certainty equivalence in dynamic programming. Econometrica, 25: 346–349, 1957.MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    M. Vellekoop and R. Berglund. On intervals transitivity  = chaos. The American Mathematical Monthly, 101: 353–355, 1994.MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    L. von Bertalanffy. General Systems Theory. Braziller, New York, 1974.Google Scholar
  52. 52.
    J. Warga. Optimal Control of Differential and Functional Equations. Academic Press, New York, 1972.MATHGoogle Scholar
  53. 53.
    G: M. Weinberg. An Introduction to general System Theory. Wiley, New York, 1975.Google Scholar
  54. 54.
    Charlotte Werndl. Are deterministic descriptions and indeterministic descriptions observationally equivalent? Studies in History and Philosophy of Modern Physics, 40: 232–242, 2009.MathSciNetCrossRefGoogle Scholar
  55. 55.
    Charlotte Werndl. What are the new implications of chaos for unpredictability? The British Journal for the Philosophy of Science, 60: 195–220, 2009.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Dipartimento di StatisticaSapienza Universita’ di RomaRomaItaly

Personalised recommendations