Optimal Estimation of Multidimensional Data with Limited Measurements

  • William MacKunis
  • J. Willard Curtis
  • Pia E. K. Berg-Yuen
Part of the Springer Optimization and Its Applications book series (SOIA, volume 61)


Recent results indicate how to optimally schedule transmissions of a measurement to a remote estimator when there are limited uses of the communication channel available. The resulting optimal encoder and estimation policies solve an important problem in networked control systems when bandwidth is limited. Previous results were obtained only for scalar processes, and the previous work was unable to address questions regarding informational relevance. We extend the state-of-the art by treating the case where the source process and measurements are multidimensional. To this end, we develop a nontrivial re-working of the underlying proofs. Specifically, we develop optimal encoder policies for Gaussian and Gauss–Markov measurement processes by utilizing a measure of the informational value of the source data. Explicit expressions for optimal hyper-ellipsoidal regions are derived and utilized in these encoder policies. Interestingly, it is shown in this chapter that analytical expressions for the hyper-ellipsoids exist only when the state’s dimension is even; in odd dimensions (as in the scalar case) the solution requires a numerical look up (e.g., use of the erf function). We have also extended the previous analyses by introducing a weighting matrix in the quadratic cumulative cost function, whose purpose is to allow the system designer to designate which states are more important or relevant to total system performance.


Unmanned Aerial Vehicle Network Control System Communication Rate Transmission Opportunity Gaussian Random Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. S. Andersland. On the optimality of open-loop LQG measurement scheduling. IEEE Transactions on Automatic Control, 40(10):1796–1799, 1995.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    J. Baillieul and P. J. Antsaklis. Control and communication challenges in networked real-time systems. Proceedings of the IEEE, 95(1):9–28, Jan. 2007.CrossRefGoogle Scholar
  3. 3.
    D. P. Bertsekas. Dynamic Programming and Optimal Control. Belmont, MA: Athena Scientific, 1995.MATHGoogle Scholar
  4. 4.
    E. Biglieri and M. Elia. Multidimensional modulation and coding for band-limited digital channels. IEEE Transactions on Information Theory, 34(4):803–809, July 1988.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    J. H. Braslavsky, R. H. Middleton, and J. S. Freudenberg. Feedback stabilization over signal-to-noise ratio constrained channels. IEEE Trans. Automat. Contr., 52(8):1391–1403, Aug. 2007.MathSciNetCrossRefGoogle Scholar
  6. 6.
    C. De Persis. n-Bit stabilization of n-dimensional nonlinear systems in feedforward form. IEEE Trans. Automat. Contr., 50(3):299–311, Mar. 2005.CrossRefGoogle Scholar
  7. 7.
    N. Elia and J. N. Eisenbeis. Limitations of linear remote control over packet drop networks. In IEEE Conference on Decision and Control, 5152–5157, Atlantis, Paradise Island, Bahamas, Dec. 2004.Google Scholar
  8. 8.
    X. Feng and K. A. Loparo. Active probing for information in control systems with quantized state measurements: A minimum entropy approach. IEEE Trans. Automat. Contr., 42(2):216–238, 1997.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    N. Gans and J. W. Curtis. A performance bound for decentralized moving horizon estimation. In Dynamics of Information Systems: Theory and Applications, Gainesville, FL, Jan. 2009.Google Scholar
  10. 10.
    V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray. On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage. Automatica, 42:251–260, 2006.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent results in networked control systems. Proceedings of the IEEE, 95(1):138–162, Jan. 2007.CrossRefGoogle Scholar
  12. 12.
    O. C. Imer. Optimal estimation and control under communication network constraints. Ph.d. thesis, University of Illinois at Urbana-Champagne, 2005.Google Scholar
  13. 13.
    O. C. Imer and T. Basar. Optimal estimation with limited measurements. International Journal of Systems, Control and Communications, 2(1–2):5–29, 2010.CrossRefGoogle Scholar
  14. 14.
    S. Kittipiyakul, P. Elia, and T. Javidi. High-SNR analysis of outage-limited communications with bursty and delay-limited information. IEEE Transactions on Information Theory, 55(2):746–763, Feb. 2009.MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Liberzon and J. P. Hespanha. Stabilization of nonlinear systems with limited information feedback. IEEE Trans. Automat. Contr., 50(6):910–915, Jun. 2005.MathSciNetCrossRefGoogle Scholar
  16. 16.
    G. M. Lipsa and N. C. Martins. Certifying the optimality of a distributed state estimation system via majorization theory. Technical report, Institute for Systems Research Technical Reports, 2009.Google Scholar
  17. 17.
    X. Liu and A. Goldsmith. Kalman filtering with partial observation losses. In IEEE Conference on Decision and Control, 4180–4186, Atlantis, Paradise Island, Bahamas, Dec. 2004.Google Scholar
  18. 18.
    L. Meier, J. Peschon, and R. Dressler. Optimal control of measurement subsystems. IEEE Transactions on Automatic Control, 12:528–536, 1967.CrossRefGoogle Scholar
  19. 19.
    G. N. Nair and R. J. Evans. Stabilization with data-rate-limited feedback: Tightest attainable bounds. Systems and Control Letters, 41:49–56, 2000.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    G. N. Nair, R. J. Evans, I. M. Y. Mareels, and W. Moran. Topological feedback entropy and nonlinear stabilization. IEEE Trans. Automat. Contr., 49(9):1585–1597, Sept. 2004.Google Scholar
  21. 21.
    G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans. Feedback control under data rate constraints: An overview. Proceedings of the IEEE, 95(1):108–137, Jan. 2007.CrossRefGoogle Scholar
  22. 22.
    I. R. Petersen and A. V. Savkin. Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel. In IEEE Conference on Decision and Control, 304–309, Orlando, FL, Dec. 2001.Google Scholar
  23. 23.
    B. Sinopoli, L. Schenato, M. Francescetti, K. Poolla, M. I. Jordan, and S. S. Sastry. Kalman filtering with intermittent observations. IEEE Trans. Automat. Contr., 49(9):1453–1464, Sept. 2004.Google Scholar
  24. 24.
    S. C. Smith and P. Seiler. Estimation with lossy measurements: Jump estimators for jump systems. IEEE Trans. Automat. Contr., 48(12):2163–2171, Dec. 2003.MathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Tatikonda and S. Mitter. Control under communication constraints. IEEE Trans. Automat. Contr., 49(7):1056–1068, July 2004.MathSciNetCrossRefGoogle Scholar
  26. 26.
    R. Touri and C. N. Hadjicostis. Stabilisation with feedback control utilising packet-dropping network links. IET Control Theory Appl., 1(1):334–342, Jan. 2007.CrossRefGoogle Scholar
  27. 27.
    Y. Q. Wang, H. Ye, and G. Z. Wang. Fault detection of NCS based on eigendecomposition, adaptive evaluation and adaptive threshold. Int’l Journal of Control, 80(12):1903–1911, 2007.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    W. S. Wong and R. W. Brockett. Systems with finite communication bandwidth constraints–part I: State estimation problems. IEEE Trans. Automat. Contr., 42(9):1294–1299, Sept. 1997.Google Scholar
  29. 29.
    W. S. Wong and R. W. Brockett. Systems with finite communication bandwidth constraints–II: Stabilization with limited information feedback. IEEE Trans. Automat. Contr., 44(5):1049–1053, May 1999.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    H. Yue and H. Want. Minimum entropy control of closed-loop tracking errors for dynamic stochastic systems. IEEE Trans. Automat. Contr., 48:118–122, 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • William MacKunis
    • 1
  • J. Willard Curtis
    • 2
  • Pia E. K. Berg-Yuen
    • 2
  1. 1.Embry-Riddle Aeronautical UniversityDaytona BeachUSA
  2. 2.Air Force Research Laboratory Munitions DirectorateEglin AFBUSA

Personalised recommendations