Skip to main content

Canonical Dual Solutions to Sum of Fourth-Order Polynomials Minimization Problems with Applications to Sensor Network Localization

  • Chapter
  • First Online:
Sensors: Theory, Algorithms, and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 61))

  • 1870 Accesses

Abstract

This chapter presents a canonical dual approach for solving a general sum of fourth-order polynomial minimization problem. This problem arises extensively in engineering and science, including database analysis, computational biology, sensor network communications, nonconvex mechanics, and ecology. We first show that this global optimization problem is actually equivalent to a discretized minimal potential variational problem in large deformation mechanics. Therefore, a general analytical solution is proposed by using the canonical duality theory developed by the first author. Both global and local extremality properties of this analytical solution are identified by a triality theory. Application to sensor network localization problem is illustrated. Our results show when the problem is not uniquely localizable, the “optimal solution” obtained by the SDP method is actually a local maximizer of the total potential energy. However, by using a perturbed canonical dual approach, a class of Euclidean distance problems can be converted to a unified concave maximization dual problem with zero duality gap, which can be solved by well-developed convex minimization methods. This chapter should bridge an existing gap between nonconvex mechanics and global optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfakih A.Y. (2000). Graph rigidity via Euclidean distance matrices, Linear Algebra and Its Applications, 310:149–165.

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfakih, A.Y., Khandani, A., and Wolkowicz, H. (1999). Solving Euclidean distance matris completion problems via Semidefinite programming. Comput. Opt. and Appl., 12:13–30.

    Article  MATH  Google Scholar 

  3. Aspnes, J., Goldberg, D., and Yang, Y.R. (2004). On the computational complexity of sensor network localization. Lecture Notes in Computer Science (3121), Springer-Verlag, pp. 32–44.

    Google Scholar 

  4. Barvinok, A. (1995). Problems of distance geometry and convex properties of quadratic maps. Disc. Comp. Geom., 13:189–202.

    Article  MathSciNet  MATH  Google Scholar 

  5. Biswas, P. and Ye, Y. (2004). Semidefinite programming for ad hoc wireless sensor network localization. Proc. 3rd IPSN, 46–54.

    Google Scholar 

  6. Biswas, P., Liang, T.C., Toh, K.C., Wang T.C., and Ye. Y. (2006) Semidefinite Programming Approaches for Sensor Network Localization with Noisy Distance Measurements. IEEE Transactions on Automation Science and Engineering 3(4), 360–371.

    Article  Google Scholar 

  7. Fang, S.C., Gao D.Y., Sheu R.l. and Wu S.Y. (2008). Canonical dual approach for solving 0-1 quadratic programming problems, J. Industrial and Management Optimization, 4.

    Google Scholar 

  8. Fang, S.-C., Gao, D.Y., Sheu, R.L., and Xin, W.X. (2009). Global optimization for a class of fractional programming problems, J. Global Optimization, 45:337–353, DOI 10.1007/s10898-008-9378-7.

    Article  MathSciNet  MATH  Google Scholar 

  9. Floudas, C. A. and Visweswaran, V. (1995). Quadratic optimization, in Handbook of Optimization, R. Horst and P.M. Pardalos (eds). Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 217–270.

    Chapter  MATH  Google Scholar 

  10. Gao, D.Y. (1996). Complementary finite element method for finite deformation nonsmooth mechanics, J. Eng. Math., 30, pp. 339–353.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, D.Y. (1996). Nonlinear elastic beam theory with applications in contact problem and variational approaches, Mech. Research Commun., 23 (1), 11–17.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, D.Y.(1998). Duality, triality and complementary extremun principles in nonconvex parametric variational problems with applications, IMA J. Appl. Math., 61, 199–235.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, D.Y. (1999). General Analytic Solutions and Complementary Variational Principles for Large Deformation Nonsmooth Mechanics. Meccanica 34, 169–198.

    MathSciNet  MATH  Google Scholar 

  14. Gao, D.Y.(2000). Duality Principles in Nonconvex Systems: Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht/Boston/London, xviii + 454pp.

    Google Scholar 

  15. Gao, D.Y. (2000). Analytic solution and triality theory for nonconvex and nonsmooth vatiational problems with applicatons, Nonlinear Analysis, 42(7), 1161–1193.

    Article  MathSciNet  Google Scholar 

  16. Gao, D.Y. (2000). Canonical dual transformation method and generalized triality theory in nonsmooth global optimization, J. Global Optimization, 17 (1/4), pp. 127–160.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, D.Y. (2001). Tri-duality in global optimization, in Encyclopedia of Optimization, C. A. Floudas and P.D. Pardalos (eds). Kluwer Academic Publishers, Dordrecht/Boston/London, Vol. 1, pp. 485–491.

    Google Scholar 

  18. Gao, D.Y. (2003). Nonconvex semi-linear problems and canonical dual solutions. Advances in Mechanics and Mathematics, Vol. II, Kluwer Academic Publishers. pp. 261–312.

    Google Scholar 

  19. Gao, D.Y. (2003). Perfect duality theory and complete solutions to a class of global optimization problems, Optimisation, 52 (4–5), pp. 467–493.

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, D.Y. (2004). Complete solutions to constrained quadratic optimization problems, J. Global Optimization, special issue on Duality. 29, 377–399.

    Article  Google Scholar 

  21. Gao, D.Y.(2005). Sufficient conditions and perfect duality in nonconvex minimization with inequality constraints, J. Industrial and Management Optimization, 1, 59–69.

    MathSciNet  Google Scholar 

  22. Gao, D.Y.(2006). Complete solutions and extremality criteria to polynomial optimization problems, J. Global Optimization, 35, 131–143.

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao, D.Y.(2007). Solutions and optimality criteria to box constrained nonconvex minimization problem, J. Industrial and Management Optimization, 3(2), 293–304.

    Article  MathSciNet  MATH  Google Scholar 

  24. Gao, D.Y. (2008). Advances in canonical duality theory with applications to global optimization, in Proceedings of the Fifth International Conference on Foundations of Computer-Aided Process Operations, Cambridge, MA, M. Ierapetriou, M. Bassett and S. Pistikopoulos (eds.), Omni Press, pp.73–82.

    Google Scholar 

  25. Gao, D.Y. (2009). Unified canonical dual solutions to a class of problems in global optimization, Computers & Chemical Engineering 33, 1964–1972.

    Article  Google Scholar 

  26. Gao, D.Y. and Ogden, R.W. (2008). Closed-form solutions, extremality and nonsmoothness criteria in a large deformation elasticity problem, Zeitschrift fur angewandte Mathematik und Physik (ZAMP), 59 (3), 498–517.

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, D.Y. and Ogden, R.W. (2008) Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation, Quarterly J. Mech. Appl. Math. 61 (4), 497–522.

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao, D.Y. and Ruan, N. (2010). Solutions to quadratic minimization problems with box and integer constraints, J. Global Optimization, 47:463–484.

    Article  MathSciNet  MATH  Google Scholar 

  29. Gao, D.Y., Ruan, N., and Sherali, H.D. (2009). Solutions and optimality criteria for nonconvex constrained global optimization problems, J. Global Optimization, 45(3):473–497.

    Article  MathSciNet  MATH  Google Scholar 

  30. Gao, D.Y., Ruan, N. and Sherali, H.D. (2010). Canonical dual solutions for fixed cost quadratic program, Optimization and Optimal Control, A. Chinchuluun et al. (eds.), Springer Optimization and Its Applications 39, DOI 10.1007/978-0-387-89496-6-7.

    Google Scholar 

  31. Gao, D.Y. and Strang, G. (1989). Geometric nonlinearity: Potential energy, complementary energy, and the gap function. Quart. Appl. Math., 47(3), 487–504.

    Article  MathSciNet  MATH  Google Scholar 

  32. Gao, D.Y. and Sherali, H.D.(2008). Canonical Duality Theory: Connections between nonconvex mechanics and global optimization. In: Gao, D. Y. & Sherali, H. D. (Editors), Advances in applied mathematics and global optimization. Including papers from CDGO, the 1st International Conference on Complementarity, Duality, and Global Optimization, Blacksburg, August 15–17, 2005, pp. 257–326. Springer, New York. ISBN: 978-0-387-75713-1 90-02

    Google Scholar 

  33. Gao, D.Y. and Wu, C-Z. (2010). On the Triality Theory in Global Optimization, to appear in J. Global Optimization (published online arXiv:1104.2970v1 at http://arxiv.org/abs/1104.2970)

  34. Gao, D.Y. and Yu, H.F. (2008). Multi-scale modelling and canonical dual finite element method in phase transitions of solids, Int. J. Solids Struct. 45, 3660–3673

    Article  MATH  Google Scholar 

  35. Hansen, P., Jaumard, B., Ruiz, M., and Xiong, J.(1991). Global minimization of indefinite quadratic functions subjects to box constraints. Technical report, Technical Report G-91-54, Gread, \(\mathrm{\acute{E}}\)cole Polytechnique, Universit\(\mathrm{\acute{e}}\) McGill, Montreal.

    Google Scholar 

  36. Horst, R., Pardalos, P.M., and Thoai, N.V.(2000). Introduction to Global Optimization. Kluwer Academic Publishers.

    Google Scholar 

  37. Li, S.F. and Gupta, A. (2006). On dual configuration forces, J. of Elasticity, 84:13–31.

    Article  MathSciNet  MATH  Google Scholar 

  38. Moré, J. and Wu, Z. (1997). Global continuation for distance geometry problems, SIAM Journal on Optimization, 7, 814–836.

    Article  MathSciNet  MATH  Google Scholar 

  39. Moreau, J.J. (1968). La notion de sur-potentiel et les liaisons unilatérales en élastostatique, C.R. Acad. Sc. Paris, 267 A, 954–957.

    MATH  Google Scholar 

  40. Moreau, J.J., Panagiotopoulos, P.D. and Strang, G. (1988). Topics in nonsmooth mechanics. Birkhuser Verlag, Basel-Boston, MA.

    MATH  Google Scholar 

  41. Murty, K.G. and Kabadi, S.N.(1988), Some NP-hard problems in quadratic and nonlinear programming, Math. Programming, 39, 117–129.

    Article  MATH  Google Scholar 

  42. Ruan, N., Gao, D.Y., and Jiao, Y. (2010). Canonical dual least square method for solving general nonlinear systems of equations, Computational Optimization with Applications, 47:335–347. DOI: 10.1007/s10589-008-9222-5

    Article  MathSciNet  MATH  Google Scholar 

  43. Saxe, J. (1979). Embeddability of weighted graphs in k-space is strongly NP-hard, in Proc. 17th Allerton Conference in Communications, Control, and Computing, Monticello, IL, 1979, 480–489.

    Google Scholar 

  44. So, A.M. and Ye, Y. Y. (2006). A semidefinite programming approach to tensegrity theory and realizability of graphs, Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, 766–775.

    Google Scholar 

  45. Tseng, P. (2007). Second-order cone programming relaxation of sensor network localization, August, 2005, SIAM Journal on Optimization, 18(1) 156–185 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  46. Waki, H., Kim, S., Kojima, M. and M. Muramatsu. Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM Journal on Optimization, 17 (1) 218–242.

    Google Scholar 

  47. Xie, D., Singh, S.B. , Fluder, E.M., and Schlick, T. (2003). Principal component analysis combined with truncated-Newton minimization for dimensionality reduction of chemical databases. Math. Program., Ser B 95: 161–185.

    MATH  Google Scholar 

Download references

Acknowledgements

The work of David Gao and N. Ruan was supported by NSF grant CCF-0514768, US Air Force (AFOSR) grants FA9550-09-1-0285 and FA9550-10-1-0487. The first author is grateful to Drs. Jiapu Zhang and Changzhi Wu at the University of Ballarat for the helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Yang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gao, D.Y., Ruan, N., Pardalos, P.M. (2012). Canonical Dual Solutions to Sum of Fourth-Order Polynomials Minimization Problems with Applications to Sensor Network Localization. In: Boginski, V.L., Commander, C.W., Pardalos, P.M., Ye, Y. (eds) Sensors: Theory, Algorithms, and Applications. Springer Optimization and Its Applications(), vol 61. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88619-0_3

Download citation

Publish with us

Policies and ethics