Skip to main content

A Spectral Clustering Approach for Modeling Connectivity Patterns in Electroencephalogram Sensor Networks

  • Chapter
  • First Online:
Book cover Sensors: Theory, Algorithms, and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 61))

  • 1845 Accesses

Abstract

Electroencephalography (EEG) is a non-invasive low cost monitoring exam that is used for the study of the brain in every hospital and research labs. Time series recorded from EEG sensors can be studied from the perspective of computational neuroscience and network theory to extract meaningful features of the brain. In this chapter we present a network clustering approach for studying synchronization phenomena as captured by cross-correlation in EEG recordings. We demonstrate the proposed clustering idea in simulated data and in EEG recordings from patients with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Abello, P.M. Pardalos, and M.G.C. Resende. On maximum clique problems in very large graphs. American Mathematical Society, 50:119–130, 1999.

    MathSciNet  MATH  Google Scholar 

  2. V. Boginski, S. Butenko, and P.M. Pardalos. Mining market data: a network approach. Comput. Oper. Res., 33(11):3171–3184, 2006.

    Article  MATH  Google Scholar 

  3. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River/Un, 1993.

    MATH  Google Scholar 

  4. M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23:298–305, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions, 11(9):1074–1085, 1992.

    Article  Google Scholar 

  6. A. Pothen, H.D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM. J. Matrix Anal. & Appl., 11:430–452, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Mathematical Journal, 25, pp. 619–633, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:888–905, 2000.

    Article  Google Scholar 

  9. A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems 14, pages 849–856. MIT Press, Boston, 2001.

    Google Scholar 

  10. J Falkner, F Rendl, and H Wolkowicz. A computational study of graph partitioning. Math. Program., 66(2):211–239, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  11. S.E. Karisch and F. Rendl. Semidefinite programming and graph equipartition. In In Topics in Semidefinite and Interior-Point Methods, pages 77–95. AMS, Providence Rhode island, 1998.

    Google Scholar 

  12. F. Rendl and H. Wolkowicz. A projection technique for partitioning the nodes of a graph. Annals of Operations Research, 58(3):155–179, May 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Micheloyannis, V. Sakkalis, M. Vourkas, C.J. Stam, and P.G. Simos. Cortical networks involved in mathematical thinking: Evidence from linear and non-linear cortical synchronization of electrical activity. Neuroscience Letters, 373:212–217, 2005.

    Article  Google Scholar 

  14. M. Ford, J. Goethe, and D. Dekker. Eeg coherence and power changes during a continuous movement task. Int. J. Psychophysiol, vol. 4:99110, 1986.

    Article  Google Scholar 

  15. J.P. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela. Measuring phase synchrony in brain signals. Human Brain Mapping, 8:194–208, 1999.

    Article  Google Scholar 

  16. S.M. Pincus. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci, 88:2297–2301, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  17. Q. Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger. Performance of different synchronization measures in real data: a case study on electroencephalographic signals,. Phys. Rev. E, 65:041903, 2002.

    Article  Google Scholar 

  18. E. Pereda, R. Q. Quiroga, and J. Bhattacharya. Nonlinear multivariate analysis of neurophysiological signals,. Progress in Neurobiology, 77:1–37, 2005.

    Article  Google Scholar 

  19. J. Dauwels, F. Vialatte, and A. Cichocki. Neural Information Processinge, volume 4984 of Lecture Notes in Computer Science, chapter A Comparative Study of Synchrony Measures for the Early Detection of Alzheimers Disease Based on EEG. Springer, Berlin / Heidelberg, 2008.

    Google Scholar 

  20. V. Sakkalis, C.D. Giurcaneanu, P. Xanthopoulos, M. Zervakis, V. Tsiaras, Y. Yang, E. Karakonstantaki, and S. Michelyannis. Assessment of linear and nonlinear synchroniztion measures for analyzing eeg in a mild epileptic paradigm. IEEE transaction on Information technology in biomedicine, 2008. DOI:10.1109/TITB.2008.923141. 13(4):433-441, Jul 2009.

    Google Scholar 

  21. L.D. Iasemidis, D.-S. Shiau, P.M. Pardalos, W. Chaovalitwongse, K. Narayanana, A. Prasad, K. Tsakalis, P.R. Carney, and J.C. Sackellares. Long-term prospective on-line real-time seizure prediction. Clinical Neurophysiology, 116(3):532–544, 2005.

    Article  Google Scholar 

  22. L.D. Iasemidis, D.-S. Shiau, W. Chaovalitwongse J.C. Sackellares, P.M. Pardalos, J.C. Principe, P.R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis. Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering, 50(5):616–627, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Xanthopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xanthopoulos, P., Arulselvan, A., Pardalos, P.M. (2012). A Spectral Clustering Approach for Modeling Connectivity Patterns in Electroencephalogram Sensor Networks. In: Boginski, V.L., Commander, C.W., Pardalos, P.M., Ye, Y. (eds) Sensors: Theory, Algorithms, and Applications. Springer Optimization and Its Applications(), vol 61. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88619-0_10

Download citation

Publish with us

Policies and ethics