Tumor-Derived Exosomes as Dendritic Cell Modulators

  • Roberta Valenti
  • Veronica Huber
  • Paola Filipazzi
  • Manuela Iero
  • Giorgio Parmiani
  • Licia Rivoltini


Cancer cells constitutively release endosome-derived microvesicles, also called ‘exosomes’, carrying a broad array of molecular determinants involved in the remodeling of the peritumoral microenvironment. This recently defined alternative mechanism of intercellular communication is exploited by tumor cells to favor their own growth and survival through the delivery of detrimental signals to the host’s innate and adaptive immune system. Initially described for their ability to transfer tumor antigens to dendritic cells in a protected and highly immunogenic membrane-embedded form, tumor-derived exosomes have been more recently hinted to exert immunosuppressive effects on the development of antitumor immune responses at different levels. In particular, due to the transport of FasL and TRAIL pro-apoptotic molecules, exosomes derived from different tumor histotypes proved to induce programmed cell death of activated antitumor-specific T cells. On the other hand, the same microvesicles seem to mine immune-mediated recognition and elimination of cancer cells since their initial stages, regarding antigen uptake and presentation by dendritic cells. As reported herein, cancer patients display several phenotypic and functional defects in this cell subset, together with a more generalized dysfunction of the myeloid cell compartment, due to the tumor-driven expansion and activation of the so-called ‘myeloid suppressor cells’. A possible involvement of tumor-derived exosomes in the disruption of the homeostasis of the antigen-presenting cell compartment in cancer patients has been recently suggested by a series of experimental evidences, as it will be mainly discussed in this chapter.


Dendritic Cell Antitumor Immune Response Dendritic Cell Differentiation Myeloid Suppressor Cell Exosome Protein 


  1. Andre, F., Schartz, N. E., Movassagh, M., Flament, C., Pautier, P., Morice, P., Pomel, C., Lhomme, C., Escudier, B., Le Chevalier, T., Tursz, T., Amigorena, S., Raposo, G., Angevin, E. and Zitvogel, L. 2002. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305.PubMedCrossRefGoogle Scholar
  2. Andreola, G., Rivoltini, L., Castelli, C., Huber, V., Perego, P., Deho, P., Squarcina, P., Accornero, P., Lozupone, F., Lugini, L., Stringaro, A., Molinari, A., Arancia, G., Gentile, M., Parmiani, G. and Fais, S. 2002. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 195:1303–1316.PubMedCrossRefGoogle Scholar
  3. Calzolari, A., Raggi, C., Deaglio, S., Sposi, N. M., Stafsnes, M., Fecchi, K., Parolini, I., Malavasi, F., Peschle, C., Sargiacomo, M. and Testa, U. 2006. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci 119:4486–4498.PubMedCrossRefGoogle Scholar
  4. Clayton, A., Mitchell, J. P., Court, J., Mason, M. D. and Tabi, Z. 2007. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res 67:7458–7466.PubMedCrossRefGoogle Scholar
  5. Escudier, B., Dorval, T., Chaput, N., Andre, F., Caby, M. P., Novault, S., Flament, C., Leboulaire, C., Borg, C., Amigorena, S., Boccaccio, C., Bonnerot, C., Dhellin, O., Movassagh, M., Piperno, S., Robert, C., Serra, V., Valente, N., Le Pecq, J. B., Spatz, A., Lantz, O., Tursz, T., Angevin, E. and Zitvogel, L. 2005. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3:10.PubMedCrossRefGoogle Scholar
  6. Fevrier, B. and Raposo, G. 2004. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421.PubMedCrossRefGoogle Scholar
  7. Filipazzi, P., Valenti, R., Huber, V., Pilla, L., Canese, P., Iero, M., Castelli, C., Mariani, L., Parmiani, G. and Rivoltini, L. 2007. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25:2546–2553.PubMedCrossRefGoogle Scholar
  8. Gesierich, S., Berezovskiy, I., Ryschich, E. and Zoller, M. 2006. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 66:7083–7094.PubMedCrossRefGoogle Scholar
  9. Ghiringhelli, F., Puig, P. E., Roux, S., Parcellier, A., Schmitt, E., Solary, E., Kroemer, G., Martin, F., Chauffert, B. and Zitvogel, L. 2005. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202:919–929.PubMedCrossRefGoogle Scholar
  10. Hegmans, J. P., Bard, M. P., Hemmes, A., Luider, T. M., Kleijmeer, M. J., Prins, J. B., Zitvogel, L., Burgers, S. A., Hoogsteden, H. C. and Lambrecht, B. N. 2004. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol 164:1807–1815.PubMedCrossRefGoogle Scholar
  11. Huber, V., Fais, S., Iero, M., Lugini, L., Canese, P., Squarcina, P., Zaccheddu, A., Colone, M., Arancia, G., Gentile, M., Seregni, E., Valenti, R., Ballabio, G., Belli, F., Leo, E., Parmiani, G. and Rivoltini, L. 2005. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128:1796–1804.PubMedCrossRefGoogle Scholar
  12. Iero, M., Valenti, R., Huber, V., Filipazzi, P., Parmiani, G., Fais, S. and Rivoltini, L. 2008. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80–88.PubMedCrossRefGoogle Scholar
  13. Kim, J. W., Wieckowski, E., Taylor, D. D., Reichert, T. E., Watkins, S. and Whiteside, T. L. 2005. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11:1010–1020.PubMedGoogle Scholar
  14. Mears, R., Craven, R. A., Hanrahan, S., Totty, N., Upton, C., Young, S. L., Patel, P., Selby, P. J. and Banks, R. E. 2004. Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 4:4019–4031.PubMedCrossRefGoogle Scholar
  15. Radons, J. and Multhoff, G. 2005. Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exerc Immunol Rev 11:17–33.PubMedGoogle Scholar
  16. Rescigno, M., Piguet, V., Valzasina, B., Lens, S., Zubler, R., French, L., Kindler, V., Tschopp, J. and Ricciardi-Castagnoli, P. 2000. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J Exp Med 192:1661–1668.PubMedCrossRefGoogle Scholar
  17. Soderberg, A., Barral, A. M., Soderstrom, M., Sander, B. and Rosen, A. 2007. Redox-signaling transmitted in trans to neighboring cells by melanoma-derived TNF-containing exosomes. Free Radic Biol Med 43:90–99.PubMedCrossRefGoogle Scholar
  18. Taylor, D. D. and Gercel-Taylor, C. 2005. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer 92:305–311.PubMedGoogle Scholar
  19. Thery, C., Zitvogel, L. and Amigorena, S. 2002. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579.PubMedGoogle Scholar
  20. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J. and Lotvall, J. O. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659.PubMedCrossRefGoogle Scholar
  21. Valenti, R., Huber, V., Filipazzi, P., Pilla, L., Sovena, G., Villa, A., Corbelli, A., Fais, S., Parmiani, G. and Rivoltini, L. 2006. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298.PubMedCrossRefGoogle Scholar
  22. Valenti, R., Huber, V., Iero, M., Filipazzi, P., Parmiani, G. and Rivoltini, L. 2007. Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915.PubMedCrossRefGoogle Scholar
  23. Wieckowski, E. and Whiteside, T. L. 2006. Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunol Res 36:247–254.PubMedCrossRefGoogle Scholar
  24. Wolfers, J., Lozier, A., Raposo, G., Regnault, A., Thery, C., Masurier, C., Flament, C., Pouzieux, S., Faure, F., Tursz, T., Angevin, E., Amigorena, S. and Zitvogel, L. 2001. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303.PubMedCrossRefGoogle Scholar
  25. Yu, S., Liu, C., Su, K., Wang, J., Liu, Y., Zhang, L., Li, C., Cong, Y., Kimberly, R., Grizzle, W. E., Falkson, C. and Zhang, H. G. 2007. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol 178:6867–6875.PubMedGoogle Scholar
  26. Zhang, H. G., Kim, H., Liu, C., Yu, S., Wang, J., Grizzle, W. E., Kimberly, R. P. and Barnes, S. 2007. Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity. Biochim Biophys Acta 1773:1116–1123.CrossRefGoogle Scholar
  27. Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi- Castagnoli, P., Raposo, G. and Amigorena, S. 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Roberta Valenti
  • Veronica Huber
  • Paola Filipazzi
  • Manuela Iero
  • Giorgio Parmiani
  • Licia Rivoltini
    • 1
  1. 1.Unit of Immunotherapy of Human TumorsIstituto Nazionale TumoriMilanoItaly

Personalised recommendations