Skip to main content

Tumor-Derived Factors Responsible for Dendritic Cell Dysfunction

  • Chapter
  • First Online:
Book cover Dendritic Cells in Cancer

Abstract

Perpetuation of immune deficiency throughout tumor development is, to a great degree, the result of impairment of dendritic cell function by products secreted by tumors. They include cytokines, non-tumor-specific molecules (gangliosides, prostanoids, nitric oxide, etc.) and tumor-(specific) antigens (MUC-1, PSA, Her-2 neu). They may engender a distortion of dendritic cell development, block dendritic cell maturation, induce dendritic cell apoptosis or interfere with antigen presentation. Identifying those molecules and their interaction with dendritic cells will accelerate the development of more efficient immunotherapies. In this chapter we review the current literature on these interactions and highlight the possible avenues of minimization of their deleterious effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalamian-Matheis, M., Chatta, G. S., Shurin, M. R., Huland, E., Huland, H. and Shurin, G. V. 2007. Inhibition of dendritic cell generation and function by serum from prostate cancer patients: correlation with serum-free PSA. Adv Exp Med Biol 601:173–182.

    Article  PubMed  Google Scholar 

  • Aalamian, M., Tourkova, I. L., Chatta, G. S., Lilja, H., Huland, E., Huland, H., Shurin, G. V. and Shurin, M. R. 2003. Inhibition of dendropoiesis by tumor derived and purified prostate specific antigen. J Urol 170:2026– 2030.

    Article  PubMed  CAS  Google Scholar 

  • Allavena, P., Piemonti, L., Longoni, D., Bernasconi, S., Stoppacciaro, A., Ruco, L. and Mantovani, A. 1998. IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol 28:359–369.

    Article  PubMed  CAS  Google Scholar 

  • Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., Carbone, D. P. and Gabrilovich, D. I. 2001. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689.

    PubMed  CAS  Google Scholar 

  • Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., Carbone, D. P. and Gabrilovich, D. I. 2000. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766.

    PubMed  CAS  Google Scholar 

  • Asselin-Paturel, C., Echchakir, H., Carayol, G., Gay, F., Opolon, P., Grunenwald, D., Chouaib, S. and Mami-Chouaib, F. 1998. Quantitative analysis of Th1, Th2 and TGF-beta1 cytokine expression in tumor, TIL and PBL of non-small cell lung cancer patients. Int J Cancer 77:7–12.

    Article  PubMed  CAS  Google Scholar 

  • Balkir, L., Tourkova, I. L., Makarenkova, V. P., Shurin, G. V., Robbins, P. D., Yin, X. M., Chatta, G. and Shurin, M. R. 2004. Comparative analysis of dendritic cells transduced with different anti-apoptotic molecules: sensitivity to tumor-induced apoptosis. J Gene Med 6:537–544.

    Article  PubMed  CAS  Google Scholar 

  • Beckebaum, S., Zhang, X., Chen, X., Yu, Z., Frilling, A., Dworacki, G., Grosse-Wilde, H., Broelsch, C. E., Gerken, G. and Cicinnati, V. R. 2004. Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 10:7260–7269.

    Article  PubMed  CAS  Google Scholar 

  • Bell, D., Chomarat, P., Broyles, D., Netto, G., Harb, G. M., Lebecque, S., Valladeau, J., Davoust, J., Palucka, K. A. and Banchereau, J. 1999. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417–1426.

    Article  PubMed  CAS  Google Scholar 

  • Birkle, S., Zeng, G., Gao, L., Yu, R. K. and Aubry, J. 2003. Role of tumor-associated gangliosides in cancer progression. Biochimie 85:455–463.

    Article  PubMed  CAS  Google Scholar 

  • Blay, J. Y., Negrier, S., Combaret, V., Attali, S., Goillot, E., Merrouche, Y., Mercatello, A., Ravault, A., Tourani, J. M., Moskovtchenko, J. F. and et al. 1992. Serum level of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma. Cancer Res 52:3317–3322.

    PubMed  CAS  Google Scholar 

  • Bodey, B. 2002. Spontaneous regression of neoplasms: new possibilities for immunotherapy. Expert Opin Biol Ther 2:459–476.

    Article  PubMed  CAS  Google Scholar 

  • Bonham, C. A., Lu, L., Li, Y., Hoffman, R. A., Simmons, R. L. and Thomson, A. W. 1996. Nitric oxide production by mouse bone marrow-derived dendritic cells: implications for the regulation of allogeneic T cell responses. Transplantation 62:1871–1877.

    Article  PubMed  CAS  Google Scholar 

  • Braun, D., Longman, R. S. and Albert, M. L. 2005. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106:2375–2381.

    Article  PubMed  CAS  Google Scholar 

  • Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., Restifo, N. P. and Zanovello, P. 2000. Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96:3838–3846.

    PubMed  CAS  Google Scholar 

  • Bronte, V., Chappell, D. B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P. and Restifo, N. P. 1999. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162:5728–5737.

    PubMed  CAS  Google Scholar 

  • Bronte, V., Serafini, P., De Santo, C., Marigo, I., Tosello, V., Mazzoni, A., Segal, D. M., Staib, C., Lowel, M., Sutter, G., Colombo, M. P. and Zanovello, P. 2003. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170:270–278.

    PubMed  CAS  Google Scholar 

  • Buelens, C., Verhasselt, V., De Groote, D., Thielemans, K., Goldman, M. and Willems, F. 1997. Interleukin-10 prevents the generation of dendritic cells from human peripheral blood mononuclear cells cultured with interleukin-4 and granulocyte/macrophage-colony-stimulating factor. Eur J Immunol 27:756–762.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, S., Heitger, A., Shen, W., Liu, Y., Taylor, B. and Ladisch, S. 2003. Mechanisms of ganglioside inhibition of APC function. J Immunol 171:1676–1683.

    PubMed  CAS  Google Scholar 

  • Chaux, P., Moutet, M., Faivre, J., Martin, F. and Martin, M. 1996. Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation. Lab Invest 74:975–983.

    PubMed  CAS  Google Scholar 

  • Colino, J., Shen, Y. and Snapper, C. M. 2002. Dendritic cells pulsed with intact Streptococcus pneumoniae elicit both protein- and polysaccharide-specific immunoglobulin isotype responses in vivo through distinct mechanisms. J Exp Med 195:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Coventry, B. J., Lee, P. L., Gibbs, D. and Hart, D. N. 2002. Dendritic cell density and activation status in human breast cancer -- CD1a, CMRF-44, CMRF-56 and CD-83 expression. Br J Cancer 86:546–551.

    Article  PubMed  CAS  Google Scholar 

  • de la Rosa, G., Longo, N., Rodriguez-Fernandez, J. L., Puig-Kroger, A., Pineda, A., Corbi, A. L. and Sanchez-Mateos, P. 2003. Migration of human blood dendritic cells across endothelial cell monolayers: adhesion molecules and chemokines involved in subset-specific transmigration. J Leukoc Biol 73:639–649.

    Article  PubMed  Google Scholar 

  • Deehan, D. J., Heys, S. D., Simpson, W. G., Broom, J., Franks, C. and Eremin, O. 1994. In vivo cytokine production and recombinant interleukin 2 immunotherapy: an insight into the possible mechanisms underlying clinical responses. Br J Cancer 69:1130–1135.

    Article  PubMed  CAS  Google Scholar 

  • Della Bella, S., Gennaro, M., Vaccari, M., Ferraris, C., Nicola, S., Riva, A., Clerici, M., Greco, M. and Villa, M. L. 2003. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer 89:1463–1472.

    Article  PubMed  CAS  Google Scholar 

  • Denkert, C., Kobel, M., Berger, S., Siegert, A., Leclere, A., Trefzer, U. and Hauptmann, S. 2001. Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 61:303–308.

    PubMed  CAS  Google Scholar 

  • Derosa, D. C., Ryan, P. J., Okragly, A., Witcher, D. R. and Benschop, R. J. 2008. Tumor-derived death receptor 6 modulates dendritic cell development. Cancer Immunol Immunother 57:777–787.

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. and Bhardwaj, N. 2001. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193:233–238.

    Article  PubMed  CAS  Google Scholar 

  • Enk, A. H., Angeloni, V. L., Udey, M. C. and Katz, S. I. 1993. Inhibition of Langerhans cell antigen-presenting function by IL-10. A role for IL-10 in induction of tolerance. J Immunol 151:2390–2398.

    CAS  Google Scholar 

  • Enk, A. H., Jonuleit, H., Saloga, J. and Knop, J. 1997. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73:309–316.

    Article  PubMed  CAS  Google Scholar 

  • Esche, C., Lokshin, A., Shurin, G. V., Gastman, B. R., Rabinowich, H., Watkins, S. C., Lotze, M. T. and Shurin, M. R. 1999. Tumor's other immune targets: dendritic cells. J Leukoc Biol 66:336–344.

    PubMed  CAS  Google Scholar 

  • Fricke, I., Mirza, N., Dupont, J., Lockhart, C., Jackson, A., Lee, J. H., Sosman, J. A. and Gabrilovich, D. I. 2007. Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res 13:4840–4848.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich, D. 2004. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S. and Carbone, D. P. 1998. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166.

    PubMed  CAS  Google Scholar 

  • Gabrilovich, D. I., Corak, J., Ciernik, I. F., Kavanaugh, D. and Carbone, D. P. 1997. Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3:483–490.

    PubMed  CAS  Google Scholar 

  • Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. and Carbone, D. P. 1999. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5:2963–2970.

    PubMed  CAS  Google Scholar 

  • Garrity, T., Pandit, R., Wright, M. A., Benefield, J., Keni, S. and Young, M. R. 1997. Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. Int J Cancer 73:663–669.

    Article  PubMed  CAS  Google Scholar 

  • Gately, S. and Li, W. W. 2004. Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 31:2–11.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Z. J., Costes, V., Lu, Z. Y., Zhang, X. G., Pitard, V., Moreau, J. F., Bataille, R., Wijdenes, J., Rossi, J. F. and Klein, B. 1996. Interleukin-10 is a growth factor for human myeloma cells by induction of an oncostatin M autocrine loop. Blood 88:3972–3986.

    PubMed  CAS  Google Scholar 

  • Hayashi, T., Hideshima, T., Akiyama, M., Raje, N., Richardson, P., Chauhan, D. and Anderson, K. C. 2003. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood 102:1435–1442.

    Article  PubMed  CAS  Google Scholar 

  • Hiltbold, E. M., Vlad, A. M., Ciborowski, P., Watkins, S. C. and Finn, O. J. 2000. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. J Immunol 165:3730–3741.

    PubMed  CAS  Google Scholar 

  • Kanto, T., Kalinski, P., Hunter, O. C., Lotze, M. T. and Amoscato, A. A. 2001. Ceramide mediates tumor-induced dendritic cell apoptosis. J Immunol 167:3773–3784.

    PubMed  CAS  Google Scholar 

  • Kim, J., Modlin, R. L., Moy, R. L., Dubinett, S. M., McHugh, T., Nickoloff, B. J. and Uyemura, K. 1995. IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response. J Immunol 155:2240–2247.

    CAS  Google Scholar 

  • Kitajima, T., Ariizumi, K., Bergstresser, P. R. and Takashima, A. 1996. Ultraviolet B radiation sensitizes a murine epidermal dendritic cell line (XS52) to undergo apoptosis upon antigen presentation to T cells. J Immunol 157:3312–3316.

    PubMed  CAS  Google Scholar 

  • Kruger-Krasagakes, S., Krasagakis, K., Garbe, C., Schmitt, E., Huls, C., Blankenstein, T. and Diamantstein, T. 1994. Expression of interleukin 10 in human melanoma. Br J Cancer 70:1182–1185.

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev, S., Nefedova, Y., Yoder, D. and Gabrilovich, D. I. 2004. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999.

    PubMed  CAS  Google Scholar 

  • Ladisch, S., Wu, Z. L., Feig, S., Ulsh, L., Schwartz, E., Floutsis, G., Wiley, F., Lenarsky, C. and Seeger, R. 1987. Shedding of GD2 ganglioside by human neuroblastoma. Int J Cancer 39:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Lissoni, P., Malugani, F., Bonfanti, A., Bucovec, R., Secondino, S., Brivio, F., Ferrari-Bravo, A., Ferrante, R., Vigore, L., Rovelli, F., Mandala, M., Viviani, S., Fumagalli, L. and Gardani, G. S. 2001. Abnormally enhanced blood concentrations of vascular endothelial growth factor (VEGF) in metastatic cancer patients and their relation to circulating dendritic cells, IL-12 and endothelin-1. J Biol Regul Homeost Agents 15:140–144.

    PubMed  CAS  Google Scholar 

  • Lissoni, P., Vigore, L., Ferranti, R., Bukovec, R., Meregalli, S., Mandala, M., Barni, S., Tancini, G., Fumagalli, L. and Giani, L. 1999. Circulating dendritic cells in early and advanced cancer patients: diminished percent in the metastatic disease. J Biol Regul Homeost Agents 13:216–219.

    PubMed  CAS  Google Scholar 

  • Lopez, J. A. and Hart, D. N. 2002. Current issues in dendritic cell cancer immunotherapy. Curr Opin Mol Ther 4:54–63.

    PubMed  Google Scholar 

  • Ludewig, B., Henn, V., Schroder, J. M., Graf, D. and Kroczek, R. A. 1996. Induction, regulation, and function of soluble TRAP (CD40 ligand) during interaction of primary CD4+ CD45RA+ T cells with dendritic cells. Eur J Immunol 26:3137– 3143.

    Article  PubMed  CAS  Google Scholar 

  • Menetrier-Caux, C., Montmain, G., Dieu, M. C., Bain, C., Favrot, M. C., Caux, C. and Blay, J. Y. 1998. Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92:4778–4791.

    PubMed  CAS  Google Scholar 

  • Monti, P., Leone, B. E., Zerbi, A., Balzano, G., Cainarca, S., Sordi, V., Pontillo, M., Mercalli, A., Di Carlo, V., Allavena, P. and Piemonti, L. 2004. Tumor-derived MUC1 mucins interact with differentiating monocytes and induce IL-10highIL-12low regulatory dendritic cell. J Immunol 172:7341–7349.

    PubMed  CAS  Google Scholar 

  • Munn, D. H. and Mellor, A. L. 2007. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117:1147–1154.

    Article  PubMed  CAS  Google Scholar 

  • Munn, D. H., Sharma, M. D., Lee, J. R., Jhaver, K. G., Johnson, T. S., Keskin, D. B., Marshall, B., Chandler, P., Antonia, S. J., Burgess, R., Slingluff, C. L., Jr. and Mellor, A. L. 2002. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870.

    Article  PubMed  CAS  Google Scholar 

  • Pak, A. S., Wright, M. A., Matthews, J. P., Collins, S. L., Petruzzelli, G. J. and Young, M. R. 1995. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1:95–103.

    PubMed  CAS  Google Scholar 

  • Park, S. J., Nakagawa, T., Kitamura, H., Atsumi, T., Kamon, H., Sawa, S., Kamimura, D., Ueda, N., Iwakura, Y., Ishihara, K., Murakami, M. and Hirano, T. 2004. IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol 173:3844–3854.

    PubMed  CAS  Google Scholar 

  • Peguet-Navarro, J., Sportouch, M., Popa, I., Berthier, O., Schmitt, D. and Portoukalian, J. 2003. Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J Immunol 170:3488–3494.

    PubMed  CAS  Google Scholar 

  • Pekarek, L. A., Starr, B. A., Toledano, A. Y. and Schreiber, H. 1995. Inhibition of tumor growth by elimination of granulocytes. J Exp Med 181:435–440.

    Article  PubMed  CAS  Google Scholar 

  • Pinzon-Charry, A., Ho, C. S., Laherty, R., Maxwell, T., Walker, D., Gardiner, R. A., O'Connor, L., Pyke, C., Schmidt, C., Furnival, C. and Lopez, J. A. 2005. A population of HLA-DR+ immature cells accumulates in the blood dendritic cell compartment of patients with different types of cancer. Neoplasia 7:1112–1122.

    Article  PubMed  CAS  Google Scholar 

  • Pinzon-Charry, A., Ho, C. S., Maxwell, T., McGuckin, M. A., Schmidt, C., Furnival, C., Pyke, C. M. and Lopez, J. A. 2007. Numerical and functional defects of blood dendritic cells in early- and late-stage breast cancer. Br J Cancer 97:1251–1259.

    Article  PubMed  CAS  Google Scholar 

  • Pinzon-Charry, A., Schmidt, C. and Lopez, J. A. 2006. Dendritic cell immunotherapy for breast cancer. Expert Opin Biol Ther 6:591–604.

    Article  PubMed  CAS  Google Scholar 

  • Pirtskhalaishvili, G., Shurin, G. V., Esche, C., Cai, Q., Salup, R. R., Bykovskaia, S. N., Lotze, M. T. and Shurin, M. R. 2000a. Cytokine-mediated protection of human dendritic cells from prostate cancer-induced apoptosis is regulated by the Bcl-2 family of proteins. Br J Cancer 83:506–513.

    Article  PubMed  CAS  Google Scholar 

  • Pirtskhalaishvili, G., Shurin, G. V., Gambotto, A., Esche, C., Wahl, M., Yurkovetsky, Z. R., Robbins, P. D. and Shurin, M. R. 2000b. Transduction of dendritic cells with Bcl-xL increases their resistance to prostate cancer-induced apoptosis and antitumor effect in mice. J Immunol 165:1956–1964.

    PubMed  CAS  Google Scholar 

  • Portoukalian, J., David, M. J., Gain, P. and Richard, M. 1993. Shedding of GD2 ganglioside in patients with retinoblastoma. Int J Cancer 53:948–951.

    Article  PubMed  CAS  Google Scholar 

  • Probst, H. C., Lagnel, J., Kollias, G. and van den Broek, M. 2003. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18:713–720.

    Article  PubMed  CAS  Google Scholar 

  • Ratta, M., Fagnoni, F., Curti, A., Vescovini, R., Sansoni, P., Oliviero, B., Fogli, M., Ferri, E., Della Cuna, G. R., Tura, S., Baccarani, M. and Lemoli, R. M. 2002. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100:230–237.

    Article  PubMed  CAS  Google Scholar 

  • Saito, H., Tsujitani, S., Ikeguchi, M., Maeta, M. and Kaibara, N. 1998. Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue. Br J Cancer 78:1573–1577.

    Article  PubMed  CAS  Google Scholar 

  • Saito, T., Dworacki, G., Gooding, W., Lotze, M. T. and Whiteside, T. L. 2000. Spontaneous apoptosis of CD8+ T lymphocytes in peripheral blood of patients with advanced melanoma. Clin Cancer Res 6:1351–1364.

    PubMed  CAS  Google Scholar 

  • Satthaporn, S., Robins, A., Vassanasiri, W., El-Sheemy, M., Jibril, J. A., Clark, D., Valerio, D. and Eremin, O. 2004. Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunother 53:510–518.

    Article  PubMed  Google Scholar 

  • Serafini, P., Carbley, R., Noonan, K. A., Tan, G., Bronte, V. and Borrello, I. 2004. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64:6337–6343.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S., Stolina, M., Yang, S. C., Baratelli, F., Lin, J. F., Atianzar, K., Luo, J., Zhu, L., Lin, Y., Huang, M., Dohadwala, M., Batra, R. K. and Dubinett, S. M. 2003. Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968.

    PubMed  CAS  Google Scholar 

  • Shurin, G. V., Shurin, M. R., Bykovskaia, S., Shogan, J., Lotze, M. T. and Barksdale, E. M., Jr. 2001. Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–369.

    PubMed  CAS  Google Scholar 

  • Sietsma, H., Nijhof, W., Dontje, B., Vellenga, E., Kamps, W. A. and Kok, J. W. 1998. Inhibition of hemopoiesis in vitro by neuroblastoma-derived gangliosides. Cancer Res 58:4840–4844.

    PubMed  CAS  Google Scholar 

  • Smith, D. R., Kunkel, S. L., Burdick, M. D., Wilke, C. A., Orringer, M. B., Whyte, R. I. and Strieter, R. M. 1994. Production of interleukin-10 by human bronchogenic carcinoma. Am J Pathol 145:18–25.

    PubMed  CAS  Google Scholar 

  • Sombroek, C. C., Stam, A. G., Masterson, A. J., Lougheed, S. M., Schakel, M. J., Meijer, C. J., Pinedo, H. M., van den Eertwegh, A. J., Scheper, R. J. and de Gruijl, T. D. 2002. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168:4333–4343.

    PubMed  CAS  Google Scholar 

  • Staveley-O'Carroll, K., Sotomayor, E., Montgomery, J., Borrello, I., Hwang, L., Fein, S., Pardoll, D. and Levitsky, H. 1998. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc Natl Acad Sci USA 95:1178–1183.

    Article  PubMed  Google Scholar 

  • Steinbrink, K., Jonuleit, H., Muller, G., Schuler, G., Knop, J. and Enk, A. H. 1999. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93:1634–1642.

    PubMed  CAS  Google Scholar 

  • Takahashi, A., Kono, K., Ichihara, F., Sugai, H., Fujii, H. and Matsumoto, Y. 2004. Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother 53:543–550.

    Article  PubMed  CAS  Google Scholar 

  • Tartour, E., Blay, J. Y., Dorval, T., Escudier, B., Mosseri, V., Douillard, J. Y., Deneux, L., Gorin, I., Negrier, S., Mathiot, C., Pouillart, P. and Fridman, W. H. 1996. Predictors of clinical response to interleukin-2--based immunotherapy in melanoma patients: a French multiinstitutional study. J Clin Oncol 14:1697–1703.

    PubMed  CAS  Google Scholar 

  • Toi, M., Taniguchi, T., Yamamoto, Y., Kurisaki, T., Suzuki, H. and Tominaga, T. 1996. Clinical significance of the determination of angiogenic factors. Eur J Cancer 32A:2513–2519.

    Article  PubMed  CAS  Google Scholar 

  • Tourkova, I. L., Shurin, G. V., Chatta, G. S., Perez, L., Finke, J., Whiteside, T. L., Ferrone, S. and Shurin, M. R. 2005. Restoration by IL-15 of MHC class I antigen-processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. J Immunol 175:3045–3052.

    PubMed  CAS  Google Scholar 

  • Tsuchiya, Y., Igarashi, M., Suzuki, R. and Kumagai, K. 1988. Production of colony- stimulating factor by tumor cells and the factor-mediated induction of suppressor cells. J Immunol 141:699–708.

    PubMed  CAS  Google Scholar 

  • Tsujii, M., Kawano, S. and DuBois, R. N. 1997. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 94:3336–3340.

    Article  PubMed  CAS  Google Scholar 

  • Vence, L., Palucka, A. K., Fay, J. W., Ito, T., Liu, Y. J., Banchereau, J. and Ueno, H. 2007. Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci USA 104:20884–20889.

    Article  PubMed  CAS  Google Scholar 

  • Villadangos, J. A. and Heath, W. R. 2005. Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells: limitations of the Langerhans cells paradigm. Semin Immunol 17:262–272.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., Yamagata, N., Yadav, R., Brandon, S., Courtney, R. L., Morrow, J. D., Shyr, Y., Boothby, M., Joyce, S., Carbone, D. P. and Breyer, R. M. 2003. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 111:727–735.

    PubMed  CAS  Google Scholar 

  • Yang, T., Witham, T. F., Villa, L., Erff, M., Attanucci, J., Watkins, S., Kondziolka, D., Okada, H., Pollack, I. F. and Chambers, W. H. 2002. Glioma-associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic cells for therapy of gliomas. Cancer Res 62:2583–2591.

    PubMed  CAS  Google Scholar 

  • Young, M. R., Wright, M. A., Lozano, Y., Prechel, M. M., Benefield, J., Leonetti, J. P., Collins, S. L. and Petruzzelli, G. J. 1997. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer 74:69–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

APC had been supported by University of Queensland and Paul Mackay Bolton Research Scholarships and is currently recipient of a NHMRC Biomedical Postdoctoral Fellowship ID: 443041. JAL is supported by the National Breast Cancer Foundation and Griffith University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Pinzon-Charry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pinzon-Charry, A., López, J.A. (2009). Tumor-Derived Factors Responsible for Dendritic Cell Dysfunction. In: Salter, R., Shurin, M. (eds) Dendritic Cells in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88611-4_7

Download citation

Publish with us

Policies and ethics