General Properties of Dendritic Cell Populations in Cancer

  • Benjamin J. Daniel
  • Duane P. Jeansonne
  • Suzanne R. Thibodeaux
  • Tyler J. Curiel


Various, distinct populations of dendritic cells (DC) populate different normal, quiescent tissues in differing amounts, where they subserve a variety of functions generally for the benefit of the host. In cancers, the types, relative proportions, and functions of DC are altered, often to the detriment of the host. This chapter reviews the general issues related to imbalanced DC populations and their causes and dysfunctional consequences in the tumor microenvironment. Potential applications of this knowledge to novel anti-cancer immunotherapy strategies are outlined. Human and mouse disease models suitable for the study of tumor microenvironmental DC are discussed.


Dendritic Cell Tumor Microenvironment Vascular Endothelial Cell Growth Factor Immature Dendritic Cell Dendritic Cell Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by CA105207, CA100425, CA054174, the Rippel Foundation, the Voelcker Trust, and UTHSCSA endowments. We apologize that space constraints prevented the citation of many important works from our colleagues.


  1. Alard, P., Clark, S. L., and Kosiewicz, M. M. 2004. Mechanisms of tolerance induced by TGF beta-treated APC: CD4 regulatory T cells prevent the induction of the immune response possibly through a mechanism involving TGF beta. Eur J Immunol 34, 1021–1030.PubMedCrossRefGoogle Scholar
  2. Asselin-Paturel, C., Brizard, G., Pin, J. J., Briere, F., and Trinchieri, G. 2003. Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J Immunol 171, 6466–6477.PubMedGoogle Scholar
  3. Banchereau, J., and Steinman, R. M. 1998. Dendritic cells and the control of immunity. Nature 392, 245–252.PubMedCrossRefGoogle Scholar
  4. Banerjee, D. K., Dhodapkar, M. V., Matayeva, E., Steinman, R. M., and Dhodapkar, K. M. 2006. Expansion of FOXP3 high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108, 2655–2661.PubMedCrossRefGoogle Scholar
  5. Bell, D., Chomarat, P., Broyles, D., Netto, G., Harb, G. M., Lebecque, S., Valladeau, J., Davoust, J., Palucka, K. A., and Banchereau, J. 1999. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190, 1417–1426.PubMedCrossRefGoogle Scholar
  6. Bellone, G., Carbone, A., Smirne, C., Scirelli, T., Buffolino, A., Novarino, A., Stacchini, A., Bertetto, O., Palestro, G., Sorio, C., et al. 2006. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol 177, 3448–3460.PubMedGoogle Scholar
  7. Blasius, A., Vermi, W., Krug, A., Facchetti, F., Cella, M., and Colonna, M. 2004. A cell-surface molecule selectively expressed on murine natural interferon-producing cells that blocks secretion of interferon-alpha. Blood 103, 4201–4206.PubMedCrossRefGoogle Scholar
  8. Byrne, S. N., and Halliday, G. M. 2002. Dendritic cells: making progress with tumour regression? Immunol Cell Biol 80, 520–530.PubMedCrossRefGoogle Scholar
  9. Carlos, C. A., Dong, H. F., Howard, O. M., Oppenheim, J. J., Hanisch, F. G., and Finn, O. J. 2005. Human tumor antigen MUC1 is chemotactic for immature dendritic cells and elicits maturation but does not promote Th1 type immunity. J Immunol 175, 1628–1635.PubMedGoogle Scholar
  10. Chan, C. W., Crafton, E., Fan, H. N., Flook, J., Yoshimura, K., Skarica, M., Brockstedt, D., Dubensky, T. W., Stins, M. F., Lanier, L. L., et al. 2006. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat Med 12, 207–213.PubMedCrossRefGoogle Scholar
  11. Conejo-Garcia, J. R., Benencia, F., Courreges, M. C., Kang, E., Mohamed-Hadley, A., Buckanovich, R. J., Holtz, D. O., Jenkins, A., Na, H., Zhang, L., et al. 2004. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 10, 950–958.PubMedCrossRefGoogle Scholar
  12. Cornet, S., Menez-Jamet, J., Lemonnier, F., Kosmatopoulos, K., and Miconnet, I. 2006. CpG oligodeoxynucleotides activate dendritic cells in vivo and induce a functional and protective vaccine immunity against a TERT derived modified cryptic MHC class I-restricted epitope. Vaccine 24, 1880–1888.PubMedCrossRefGoogle Scholar
  13. Curiel, T. J., Cheng, P., Mottram, P., Alvarez, X., Moons, L., Evdemon-Hogan, M., Wei, S., Zou, L., Kryczek, I., Hoyle, G., et al. 2004. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64, 5535–5538.PubMedCrossRefGoogle Scholar
  14. Curiel, T. J., Wei, S., Dong, H., Alvarez, X., Cheng, P., Mottram, P., Krzysiek, R., Knutson, K. L., Daniel, B., Zimmermann, M. C., et al. 2003. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9, 562–567.PubMedCrossRefGoogle Scholar
  15. Ebata, K., Shimizu, Y., Nakayama, Y., Minemura, M., Murakami, J., Kato, T., Yasumura, S., Takahara, T., Sugiyama, T., and Saito, S. 2006. Immature NK cells suppress dendritic cell functions during the development of leukemia in a mouse model. J Immunol 176, 4113–4124.PubMedGoogle Scholar
  16. Faith, A., Peek, E., McDonald, J., Urry, Z., Richards, D. F., Tan, C., Santis, G., and Hawrylowicz, C. 2007. Plasmacytoid dendritic cells from human lung cancer draining lymph nodes induce Tc1 responses. Am J Respir Cell Mol Biol 36, 360–367.PubMedCrossRefGoogle Scholar
  17. Feijoo, E., Alfaro, C., Mazzolini, G., Serra, P., Penuelas, I., Arina, A., Huarte, E., Tirapu, I., Palencia, B., Murillo, O., et al. 2005. Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8. Int J Cancer 116, 275–281.PubMedCrossRefGoogle Scholar
  18. Fiore, F., Von Bergwelt-Baildon, M. S., Drebber, U., Beyer, M., Popov, A., Manzke, O., Wickenhauser, C., Baldus, S. E., and Schultze, J. L. 2006. Dendritic cells are significantly reduced in non-Hodgkin's lymphoma and express less CCR7 and CD62L. Leuk Lymphoma 47, 613–622.PubMedCrossRefGoogle Scholar
  19. Frenzel, H., Pries, R., Brocks, C. P., Jabs, W. J., Wittkopf, N., and Wollenberg, B. 2007. Decreased migration of myeloid dendritic cells through increased levels of C-reactive protein. Anticancer Res 27, 4111–4115.PubMedGoogle Scholar
  20. Fricke, I., and Gabrilovich, D. I. 2006. Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Invest 35, 459–483.PubMedCrossRefGoogle Scholar
  21. Fricke, I., Mirza, N., Dupont, J., Lockhart, C., Jackson, A., Lee, J. H., Sosman, J. A., and Gabrilovich, D. I. 2007. Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res 13, 4840–4848.PubMedCrossRefGoogle Scholar
  22. Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., Kavanaugh, D., and Carbone, D. P. 1996. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells [published erratum appears in Nat Med 1996 Nov;2(11):1267]. Nat Med 2, 1096–1103.PubMedCrossRefGoogle Scholar
  23. Gerlini, G., Urso, C., Mariotti, G., Di Gennaro, P., Palli, D., Brandani, P., Salvadori, A., Pimpinelli, N., Reali, U. M., and Borgognoni, L. 2007. Plasmacytoid dendritic cells represent a major dendritic cell subset in sentinel lymph nodes of melanoma patients and accumulate in metastatic nodes. Clin Immunol 125, 184–193.PubMedCrossRefGoogle Scholar
  24. Ghiringhelli, F., Puig, P. E., Roux, S., Parcellier, A., Schmitt, E., Solary, E., Kroemer, G., Martin, F., Chauffert, B., and Zitvogel, L. 2005. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202, 919–929.PubMedCrossRefGoogle Scholar
  25. Gottfried, E., Kreutz, M., Haffner, S., Holler, E., Iacobelli, M., Andreesen, R., and Eissner, G. 2007. Differentiation of human tumour-associated dendritic cells into endothelial-like cells: an alternative pathway of tumour angiogenesis. Scand J Immunol 65, 329–335.PubMedCrossRefGoogle Scholar
  26. Gottfried, E., Kunz-Schughart, L. A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., Mackensen, A., and Kreutz, M. 2006. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107, 2013–2021.PubMedCrossRefGoogle Scholar
  27. Iwamoto, M., Shinohara, H., Miyamoto, A., Okuzawa, M., Mabuchi, H., Nohara, T., Gon, G., Toyoda, M., and Tanigawa, N. 2003. Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer 104, 92–97.PubMedCrossRefGoogle Scholar
  28. Iwamoto, S., Iwai, S., Tsujiyama, K., Kurahashi, C., Takeshita, K., Naoe, M., Masunaga, A., Ogawa, Y., Oguchi, K., and Miyazaki, A. 2007. TNF-alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. J Immunol 179, 1449–1457.PubMedGoogle Scholar
  29. Kang, H. K., Park, J. S., Kim, S. K., Choi, B. H., Pham, T. N., Zhu, X. W., Cho, D., Nam, J. H., Kim, Y. J., Rhee, J. H., et al. 2006. Down-regulation of cellular vascular endothelial growth factor levels induces differentiation of leukemic cells to functional leukemic-dendritic cells in acute myeloid leukemia. Leuk Lymphoma 47, 2224–2233.PubMedCrossRefGoogle Scholar
  30. Kovarova, L., Buchler, T., Pour, L., Zahradova, L., Ocadlikova, D., Svobodnik, A., Penka, M., Vorlicek, J., and Hajek, R. 2007. Dendritic cell counts and their subsets during treatment of multiple myeloma. Neoplasma 54, 297–303.PubMedGoogle Scholar
  31. Krug, A., French, A. R., Barchet, W., Fischer, J. A., Dzionek, A., Pingel, J. T., Orihuela, M. M., Akira, S., Yokoyama, W. M., and Colonna, M. 2004. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119.PubMedCrossRefGoogle Scholar
  32. Kryczek, I., Wei, S., Zou, L., Altuwaijri, S., Szeliga, W., Kolls, J., Chang, A., and Zou, W. 2007. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 178, 6730–6733.PubMedGoogle Scholar
  33. Kusmartsev, S., and Gabrilovich, D. I. 2006. Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 25, 323–331.PubMedCrossRefGoogle Scholar
  34. Lee, B. N., Follen, M., Rodriquez, G., Shen, D. Y., Malpica, A., Shearer, W. T., and Reuben, J. M. 2006. Deficiencies in myeloid antigen-presenting cells in women with cervical squamous intraepithelial lesions. Cancer 107, 999–1007.PubMedCrossRefGoogle Scholar
  35. Liu, C., Lou, Y., Lizee, G., Qin, H., Liu, S., Rabinovich, B., Kim, G. J., Wang, Y. H., Ye, Y., Sikora, A. G., et al. 2008. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J Clin Invest 118, 1165–1175.PubMedGoogle Scholar
  36. Lou, Y., Liu, C., Kim, G. J., Liu, Y. J., Hwu, P., and Wang, G. 2007. Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J Immunol 178, 1534–1541.PubMedGoogle Scholar
  37. Mirza, N., Fishman, M., Fricke, I., Dunn, M., Neuger, A. M., Frost, T. J., Lush, R. M., Antonia, S., and Gabrilovich, D. I. 2006. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66, 9299–9307.PubMedCrossRefGoogle Scholar
  38. Munn, D. H., Sharma, M. D., Baban, B., Harding, H. P., Zhang, Y., Ron, D., and Mellor, A. L. 2005. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642.PubMedCrossRefGoogle Scholar
  39. Munn, D. H., Sharma, M. D., Hou, D., Baban, B., Lee, J. R., Antonia, S. J., Messina, J. L., Chandler, P., Koni, P. A., and Mellor, A. L. 2004. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114, 280–290.PubMedGoogle Scholar
  40. Nagorsen, D., Voigt, S., Berg, E., Stein, H., Thiel, E., and Loddenkemper, C. 2007. Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med 5, 62.PubMedCrossRefGoogle Scholar
  41. O'Donnell, R. K., Mick, R., Feldman, M., Hino, S., Wang, Y., Brose, M. S., and Muschel, R. J. 2007. Distribution of dendritic cell subtypes in primary oral squamous cell carcinoma is inconsistent with a functional response. Cancer Lett 255, 145–152.PubMedCrossRefGoogle Scholar
  42. Okunishi, K., Dohi, M., Nakagome, K., Tanaka, R., Mizuno, S., Matsumoto, K., Miyazaki, J., Nakamura, T., and Yamamoto, K. 2005. A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol 175, 4745–4753.PubMedGoogle Scholar
  43. Osada, T., Chong, G., Tansik, R., Hong, T., Spector, N., Kumar, R., Hurwitz, H. I., Dev, I., Nixon, A. B., Lyerly, H. K., et al. 2008. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57, 1115–1124.PubMedCrossRefGoogle Scholar
  44. Peng, G., Wang, H. Y., Peng, W., Kiniwa, Y., Seo, K. H., and Wang, R. F. 2007. Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27, 334–348.PubMedCrossRefGoogle Scholar
  45. Perrot, I., Blanchard, D., Freymond, N., Isaac, S., Guibert, B., Pacheco, Y., and Lebecque, S. 2007. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol 178, 2763–2769.PubMedGoogle Scholar
  46. Pockaj, B. A., Basu, G. D., Pathangey, L. B., Gray, R. J., Hernandez, J. L., Gendler, S. J., and Mukherjee, P. 2004. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol 11, 328–339.PubMedCrossRefGoogle Scholar
  47. Poznansky, M. C., Olszak, I. T., Foxall, R., Evans, R. H., Luster, A. D., and Scadden, D. T. 2000. Active movement of T cells away from a chemokine. Nat Med 6, 543–548.PubMedCrossRefGoogle Scholar
  48. Preynat-Seauve, O., Schuler, P., Contassot, E., Beermann, F., Huard, B., and French, L. E. 2006. Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection. J Immunol 176, 61–67.PubMedGoogle Scholar
  49. Sakakura, K., Chikamatsu, K., Takahashi, K., Whiteside, T. L., and Furuya, N. 2006. Maturation of circulating dendritic cells and imbalance of T-cell subsets in patients with squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 55, 151–159.PubMedCrossRefGoogle Scholar
  50. Salio, M., Palmowski, M. J., Atzberger, A., Hermans, I. F., and Cerundolo, V. 2004. CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J Exp Med 199, 567–579.PubMedCrossRefGoogle Scholar
  51. Sharma, M. D., Baban, B., Chandler, P., Hou, D. Y., Singh, N., Yagita, H., Azuma, M., Blazar, B. R., Mellor, A. L., and Munn, D. H. 2007. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117, 2570–2582.PubMedCrossRefGoogle Scholar
  52. Steinman, L. 2007. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13, 139–145.PubMedCrossRefGoogle Scholar
  53. Taieb, J., Chaput, N., Menard, C., Apetoh, L., Ullrich, E., Bonmort, M., Pequignot, M., Casares, N., Terme, M., Flament, C., et al. 2006. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 12, 214–219.PubMedCrossRefGoogle Scholar
  54. Thomachot, M. C., Bendriss-Vermare, N., Massacrier, C., Biota, C., Treilleux, I., Goddard, S., Caux, C., Bachelot, T., Blay, J. Y., and Menetrier-Caux, C. 2004. Breast carcinoma cells promote the differentiation of CD34+ progenitors towards 2 different subpopulations of dendritic cells with CD1a(high)CD86(-)Langerin- and CD1a(+)CD86(+)Langerin+ phenotypes. Int J Cancer 110, 710–720.PubMedCrossRefGoogle Scholar
  55. Troy, A. J., Summers, K. L., Davidson, P. J., Atkinson, C. H., and Hart, D. N. 1998. Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin Cancer Res 4, 585–593.PubMedGoogle Scholar
  56. Valenti, R., Huber, V., Filipazzi, P., Pilla, L., Sovena, G., Villa, A., Corbelli, A., Fais, S., Parmiani, G., and Rivoltini, L. 2006. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66, 9290–9298.PubMedCrossRefGoogle Scholar
  57. van Cruijsen, H., Hoekman, K., Stam, A. G., van den Eertwegh, A. J., Kuenen, B. C., Scheper, R. J., Giaccone, G., and de Gruijl, T. D. 2007. Defective differentiation of myeloid and plasmacytoid dendritic cells in advanced cancer patients is not normalized by tyrosine kinase inhibition of the vascular endothelial growth factor receptor. Clin Dev Immunol 2007, 17315.PubMedGoogle Scholar
  58. van der Vliet, H. J., Wang, R., Yue, S. C., Koon, H. B., Balk, S. P., and Exley, M. A. 2008. Circulating myeloid dendritic cells of advanced cancer patients result in reduced activation and a biased cytokine profile in invariant NKT cells. J Immunol 180, 7287–7293.PubMedGoogle Scholar
  59. Waller, E. K. (2007). The role of sargramostim (rhGM-CSF) as immunotherapy. Oncologist 12 Suppl 2, 22–26.PubMedGoogle Scholar
  60. Wei, S., Kryczek, I., Zou, L., Daniel, B., Cheng, P., Mottram, P., Curiel, T., Lange, A., and Zou, W. (2005). Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 65, 5020–5026.PubMedCrossRefGoogle Scholar
  61. Wolfl, M., Batten, W. Y., Posovszky, C., Bernhard, H., and Berthold, F. (2002). Gangliosides inhibit the development from monocytes to dendritic cells. Clin Exp Immunol 130, 441–448.PubMedCrossRefGoogle Scholar
  62. Xu, Y., Darcy, P. K., and Kershaw, M. H. (2007). Tumor-specific dendritic cells generated by genetic redirection of Toll-like receptor signaling against the tumor-associated antigen, erbB2. Cancer Gene Ther 14, 773–780.PubMedCrossRefGoogle Scholar
  63. Zou, W. (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5, 263–274.PubMedCrossRefGoogle Scholar
  64. Zou, W. (2006). Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6, 295–307.PubMedCrossRefGoogle Scholar
  65. Zou, W., Machelon, V., Coulomb-L'Hermin, A., Borvak, J., Nome, F., Isaeva, T., Wei, S., Krzysiek, R., Durand-Gasselin, I., Gordon, A., et al. (2001). Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7, 1339–1346.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Benjamin J. Daniel
  • Duane P. Jeansonne
  • Suzanne R. Thibodeaux
  • Tyler J. Curiel
    • 1
  1. 1.Cancer Therapy & Research Center at UTHSCSASan AntonioUSA

Personalised recommendations