Functional Defects of Dendritic Cells in Cancer



Altered dendritic cell function is one of the most fundamental mechanisms of tumor escape from immune surveillance. Functional characteristics of dendritic cells evolve with their differentiation and are tightly controlled by the cytokine network. Tumors actively interfere with dendritic cell differentiation and their acquisition of functional properties and render them defective. This chapter reviews the data characterizing the effect of tumor on the key functions of dendritic cells, including antigen uptake, antigen presentation, expression of cell surface molecules, motility and cytokine production.


Dendritic Cell Chronic Myeloid Leukemia Patient Dendritic Cell Maturation Immature Dendritic Cell Transporter Associate With Antigen Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aalamian-Matheis, M., Chatta, G. S., Shurin, M. R., Huland, E., Huland, H. and Shurin, G. V. 2007. Inhibition of dendritic cell generation and function by serum from prostate cancer patients: correlation with serum-free PSA. Adv Exp Med Biol 601:173–182.PubMedCrossRefGoogle Scholar
  2. Aalamian, M., Tourkova, I. L., Chatta, G. S., Lilja, H., Huland, E., Huland, H., Shurin, G. V. and Shurin, M. R. 2003. Inhibition of dendropoiesis by tumor derived and purified prostate specific antigen. J Urol 170:2026–2030.PubMedCrossRefGoogle Scholar
  3. Alard, P., Clark, S. L. and Kosiewicz, M. M. 2004. Mechanisms of tolerance induced by TGF beta-treated APC: CD4 regulatory T cells prevent the induction of the immune response possibly through a mechanism involving TGF beta. Eur J Immunol 34:1021–1030.PubMedCrossRefGoogle Scholar
  4. Aspord, C., Pedroza-Gonzalez, A., Gallegos, M., Tindle, S., Burton, E. C., Su, D., Marches, F., Banchereau, J. and Palucka, A. K. 2007. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med 204:1037–1047.PubMedCrossRefGoogle Scholar
  5. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B. and Palucka, K. 2000. Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811.PubMedCrossRefGoogle Scholar
  6. Banchereau, J. and Steinman, R. M. 1998. Dendritic cells and the control of immunity. Nature 392:245–252.PubMedCrossRefGoogle Scholar
  7. Beckebaum, S., Cicinnati, V. R. and Broelsch, C. E. 2004a. Future directions in immunosuppression. Transplant Proc 36:574S–576S.PubMedCrossRefGoogle Scholar
  8. Beckebaum, S., Zhang, X., Chen, X., Yu, Z., Frilling, A., Dworacki, G., Grosse-Wilde, H., Broelsch, C. E., Gerken, G. and Cicinnati, V. R. 2004b. Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 10:7260–7269.PubMedCrossRefGoogle Scholar
  9. Bellone, G., Carbone, A., Smirne, C., Scirelli, T., Buffolino, A., Novarino, A., Stacchini, A., Bertetto, O., Palestro, G., Sorio, C., Scarpa, A., Emanuelli, G. and Rodeck, U. 2006. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol 177:3448–3460.PubMedGoogle Scholar
  10. Bennaceur, K., Chapman, J., Brikci-Nigassa, L., Sanhadji, K., Touraine, J. L. and Portoukalian, J. 2008. Dendritic cells dysfunction in tumour environment. Cancer Lett 272(2):186–196.Google Scholar
  11. Bennaceur, K., Popa, I., Portoukalian, J., Berthier-Vergnes, O. and Peguet-Navarro, J. 2006. Melanoma-derived gangliosides impair migratory and antigen-presenting function of human epidermal Langerhans cells and induce their apoptosis. Int Immunol 18:879–886.PubMedCrossRefGoogle Scholar
  12. Bergeron, A., El-Hage, F., Kambouchner, M., Lecossier, D. and Tazi, A. 2006. Characterisation of dendritic cell subsets in lung cancer micro-environments. Eur Respir J 28:1170–1177.PubMedCrossRefGoogle Scholar
  13. Brown, R. D., Pope, B., Murray, A., Esdale, W., Sze, D. M., Gibson, J., Ho, P. J., Hart, D. and Joshua, D. 2001. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 98:2992–2998.PubMedCrossRefGoogle Scholar
  14. Carlos, C. A., Dong, H. F., Howard, O. M., Oppenheim, J. J., Hanisch, F. G. and Finn, O. J. 2005. Human tumor antigen MUC1 is chemotactic for immature dendritic cells and elicits maturation but does not promote Th1 type immunity. J Immunol 175:1628–1635.PubMedGoogle Scholar
  15. Caux, C., Vanbervliet, B., Massacrier, C., Ait-Yahia, S., Vaure, C., Chemin, K., Dieu-Nosjean, M-C. and Vicari, A. 2002. Regulation of dendritic cell recruitment by chemokines. Transplantation 73:S7–S11.PubMedCrossRefGoogle Scholar
  16. Chaux, P., Favre, N., Martin, M. and Martin, F. 1997. Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats. Int J Cancer 72:619–624.PubMedCrossRefGoogle Scholar
  17. Chen, Z., Dehm, S., Bonham, K., Kamencic, H., Juurlink, B., Zhang, X., Gordon, J. R. and Xiang, J. 2001. DNA array and biological characterization of the impact of the maturation status of mouse dendritic cells on their phenotype and antitumor vaccination efficacy. Cell Immunol 214:60–71.PubMedCrossRefGoogle Scholar
  18. Cheng, P., Nefedova, Y., Miele, L., Osborne, B. A. and Gabrilovich, D. 2003. Notch signaling is necessary but not sufficient for differentiation of dendritic cells. Blood 102:3980–3988.PubMedCrossRefGoogle Scholar
  19. Clark, G. J., Angel, N., Kato, M., Lopez, J. A., MacDonald, K., Vuckovic, S. and Hart, D. N. 2000. The role of dendritic cells in the innate immune system. Microbes Infect 2:257–272.PubMedCrossRefGoogle Scholar
  20. Curiel, T. J., Cheng, P., Mottram, P., Alvarez, X., Moons, L., Evdemon-Hogan, M., Wei, S., Zou, L., Kryczek, I., Hoyle, G., Lackner, A., Carmeliet, P. and Zou, W. 2004a. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64:5535–5538.PubMedCrossRefGoogle Scholar
  21. Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J. R., Zhang, L., Burow, M., Zhu, Y., Wei, S., Kryczek, I., Daniel, B., Gordon, A., Myers, L., Lackner, A., Disis, M. L., Knutson, K. L., Chen, L. and Zou, W. 2004b. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949.PubMedCrossRefGoogle Scholar
  22. Curtsinger, J. M., Lins, D. C. and Mescher, M. F. 2003. Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med 197:1141–1151.PubMedCrossRefGoogle Scholar
  23. Darmanin, S., Chen, J., Zhao, S., Cui, H., Shirkoohi, R., Kubo, N., Kuge, Y., Tamaki, N., Nakagawa, K., Hamada, J., Moriuchi, T. and Kobayashi, M. 2007. All-trans retinoic acid enhances murine dendritic cell migration to draining lymph nodes via the balance of matrix metalloproteinases and their inhibitors. J Immunol 179:4616–4625.PubMedGoogle Scholar
  24. Dave, S. S., Wright, G., Tan, B., Rosenwald, A., Gascoyne, R. D., Chan, W. C., Fisher, R. I., Braziel, R. M., Rimsza, L. M., Grogan, T. M., Miller, T. P., LeBlanc, M., Greiner, T. C., Weisenburger, D. D., Lynch, J. C., Vose, J., Armitage, J. O., Smeland, E. B., Kvaloy, S., Holte, H., Delabie, J., Connors, J. M., Lansdorp, P. M., Ouyang, Q., Lister, T. A., Davies, A. J., Norton, A. J., Muller-Hermelink, H. K., Ott, G., Campo, E., Montserrat, E., Wilson, W. H., Jaffe, E. S., Simon, R., Yang, L., Powell, J., Zhao, H., Goldschmidt, N., Chiorazzi, M. and Staudt, L. M. 2004. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351:2159–2169.PubMedCrossRefGoogle Scholar
  25. del Hoyo, G. M., Martin, P., Vargas, H. H., Ruiz, S., Arias, C. F. and Ardavin, C. 2002. Characterization of a common precursor population for dendritic cells. Nature 415:1043–1047.PubMedCrossRefGoogle Scholar
  26. Del Vecchio, M., Bajetta, E., Canova, S., Lotze, M. T., Wesa, A., Parmiani, G. and Anichini, A. 2007. Interleukin-12: biological properties and clinical application. Clin Cancer Res 13:4677–4685.PubMedCrossRefGoogle Scholar
  27. Della Bella, S., Gennaro, M., Vaccari, M., Ferraris, C., Nicola, S., Riva, A., Clerici, M., Greco, M. and Villa, M. L. 2003. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer 89:1463–1472.PubMedCrossRefGoogle Scholar
  28. De Vries, I. J., Krooshoop, D. J., Scharenborg, N. M., Lesterhuis, W. J., Diepstra, J. H., Van Muijen, G. N., Strijk, S. P., Ruers, T. J., Boerman, O. C., Oyen, W. J., Adema, G. J., Punt, C. J. and Figdor, C. G. 2003. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63:12–17.PubMedGoogle Scholar
  29. Dhodapkar, M. V., Dhodapkar, K. M. and Palucka, A. K. 2008. Interactions of tumor cells with dendritic cells: balancing immunity and tolerance. Cell Death Differ 15:39–50.PubMedCrossRefGoogle Scholar
  30. Dong, R., Cwynarski, K., Entwistle, A., Marelli-Berg, F., Dazzi, F., Simpson, E., Goldman, J. M., Melo, J. V., Lechler, R. I., Bellantuono, I., Ridley, A. and Lombardi, G. 2003. Dendritic cells from CML patients have altered actin organization, reduced antigen processing, and impaired migration. Blood 101:3560–3567.PubMedCrossRefGoogle Scholar
  31. Enk, A. H., Jonuleit, H., Saloga, J. and Knop, J. 1997. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73:309–316.PubMedCrossRefGoogle Scholar
  32. Feijoo, E., Alfaro, C., Mazzolini, G., Serra, P., Penuelas, I., Arina, A., Huarte, E., Tirapu, I., Palencia, B., Murillo, O., Ruiz, J., Sangro, B., Richter, J. A., Prieto, J. and Melero, I. 2005. Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8. Int J Cancer 116:275–281.PubMedCrossRefGoogle Scholar
  33. Fricke, I. and Gabrilovich, D. I. 2006. Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Invest 35:459–483.PubMedCrossRefGoogle Scholar
  34. Gabrilovich, D. 2004. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952.PubMedCrossRefGoogle Scholar
  35. Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., Kavanaugh, D. and Carbone, D. P. 1996a. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103.PubMedCrossRefGoogle Scholar
  36. Gabrilovich, D. I., Ciernik, I. F. and Carbone, D. P. 1996b. Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol 170:101–110.PubMedCrossRefGoogle Scholar
  37. Gabrilovich, D. I., Corak, J., Ciernik, I. F., Kavanaugh, D. and Carbone, D. P. 1997. Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3:483–490.PubMedGoogle Scholar
  38. Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoue, F., Bruneval, P., Cugnenc, P. H., Trajanoski, Z., Fridman, W. H. and Pages, F. 2006. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964.PubMedCrossRefGoogle Scholar
  39. Gottfried, E., Kreutz, M. and Mackensen, A. 2008. Tumor-induced modulation of dendritic cell function. Cytokine Growth Factor Rev 19:65–77.PubMedCrossRefGoogle Scholar
  40. Gottfried, E., Kunz-Schughart, L. A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., Mackensen, A. and Kreutz, M. 2006. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107:2013–2021.PubMedCrossRefGoogle Scholar
  41. Grouard, G., Rissoan, M. C., Filgueira, L., Durand, I., Banchereau, J. and Liu, Y. J. 1997. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 185:1101–1111.PubMedCrossRefGoogle Scholar
  42. Hartmann, E., Wollenberg, B., Rothenfusser, S., Wagner, M., Wellisch, D., Mack, B., Giese, T., Gires, O., Endres, S. and Hartmann, G. 2003. Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res 63:6478–6487.PubMedGoogle Scholar
  43. Hasebe, H., Nagayama, H., Sato, K., Enomoto, M., Takeda, Y., Takahashi, T. A., Hasumi, K. and Eriguchi, M. 2000. Dysfunctional regulation of the development of monocyte-derived dendritic cells in cancer patients. Biomed Pharmacother 54:291–298.PubMedCrossRefGoogle Scholar
  44. Hiltbold, E. M., Vlad, A. M., Ciborowski, P., Watkins, S. C. and Finn, O. J. 2000. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. J Immunol 165:3730–3741.PubMedGoogle Scholar
  45. Hiraoka, K., Miyamoto, M., Cho, Y., Suzuoki, M., Oshikiri, T., Nakakubo, Y., Itoh, T., Ohbuchi, T., Kondo, S. and Katoh, H. 2006. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94:275–280.PubMedCrossRefGoogle Scholar
  46. Hoffmann, T. K., Muller-Berghaus, J., Ferris, R. L., Johnson, J. T., Storkus, W. J. and Whiteside, T. L. 2002. Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin Cancer Res 8:1787–1793.PubMedGoogle Scholar
  47. Inoue, K., Furihata, M., Ohtsuki, Y. and Fujita, Y. 1993. Distribution of S-100 protein-positive dendritic cells and expression of HLA-DR antigen in transitional cell carcinoma of the urinary bladder in relation to tumour progression and prognosis. Virchows Arch A Pathol Anat Histopathol 422:351–355.PubMedCrossRefGoogle Scholar
  48. Ishida, T., Oyama, T., Carbone, D. P. and Gabrilovich, D. I. 1998. Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. J Immunol 161:4842–4851.PubMedGoogle Scholar
  49. Jackson, A. M., Mulcahy, L. A., Zhu, X. W., O'Donnell, D. and Patel, P. M. 2008. Tumour-mediated disruption of dendritic cell function: inhibiting the MEK1/2-p44/42 axis restores IL-12 production and Th1-generation. Int J Cancer 123:623–632.PubMedCrossRefGoogle Scholar
  50. Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F. and Lanzavecchia, A. 2001. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31:3388–3393.PubMedCrossRefGoogle Scholar
  51. Kakumu, S., Ito, S., Ishikawa, T., Mita, Y., Tagaya, T., Fukuzawa, Y. and Yoshioka, K. 2000. Decreased function of peripheral blood dendritic cells in patients with hepatocellular carcinoma with hepatitis B and C virus infection. J Gastroenterol Hepatol 15:431–436.PubMedCrossRefGoogle Scholar
  52. Kalinski, P., Hilkens, C. M., Wierenga, E. A. and Kapsenberg, M. L. 1999. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20:561–567.PubMedCrossRefGoogle Scholar
  53. Kalinski, P., Schuitemaker, J. H., Hilkens, C. M. and Kapsenberg, M. L. 1998. Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol 161:2804–2809.PubMedGoogle Scholar
  54. Kellermann, S. A., Hudak, S., Oldham, E. R., Liu, Y. J. and McEvoy, L. M. 1999. The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3 beta are potent chemoattractants for in vitro- and in vivo-derived dendritic cells. J Immunol 162:3859–3864.PubMedGoogle Scholar
  55. Kikuchi, T., Abe, T. and Ohno, T. 2002. Effects of glioma cells on maturation of dendritic cells. J Neurooncol 58:125–130.PubMedCrossRefGoogle Scholar
  56. Kleijmeer, M., Ramm, G., Schuurhuis, D., Griffith, J., Rescigno, M., Ricciardi-Castagnoli, P., Rudensky, A. Y., Ossendorp, F., Melief, C. J., Stoorvogel, W. and Geuze, H. J. 2001. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J Cell Biol 155:53–63.PubMedCrossRefGoogle Scholar
  57. Konno, S., Eckman, J. A., Plunkett, B., Li, X., Berman, J. S., Schroeder, J. and Huang, S. K. 2006. Interleukin-10 and Th2 cytokines differentially regulate osteopontin expression in human monocytes and dendritic cells. J Interferon Cytokine Res 26:562–567.PubMedCrossRefGoogle Scholar
  58. Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., Niu, G., Kay, H., Mule, J., Kerr, W. G., Jove, R., Pardoll, D. and Yu, H. 2005. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321.PubMedCrossRefGoogle Scholar
  59. Kudela, P., Schwarczova, Z., Sedlak, J. and Bizik, J. 2001. Conditioned medium from HeLa cells enhances motility of human monocyte-derived dendritic cells but abrogates their maturation and endocytic activity. Neoplasma 48:382–388.PubMedGoogle Scholar
  60. Kuppner, M. C., Gastpar, R., Gelwer, S., Nossner, E., Ochmann, O., Scharner, A. and Issels, R. D. 2001. The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 31:1602–1609.PubMedCrossRefGoogle Scholar
  61. Langenkamp, A., Messi, M., Lanzavecchia, A. and Sallusto, F. 2000. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1:311–316.PubMedCrossRefGoogle Scholar
  62. Makarenkova, V. P., Shurin, G. V., Tourkova, I. L., Balkir, L., Pirtskhalaishvili, G., Perez, L., Gerein, V., Siegfried, J. M. and Shurin, M. R. 2003. Lung cancer-derived bombesin-like peptides down-regulate the generation and function of human dendritic cells. J Neuroimmunol 145:55–67.PubMedCrossRefGoogle Scholar
  63. Mellor, A. L. and Munn, D. H. 2004. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774.PubMedCrossRefGoogle Scholar
  64. Mende, I., Karsunky, H., Weissman, I. L., Engleman, E. G. and Merad, M. 2006. Flk2+ myeloid progenitors are the main source of Langerhans cells. Blood 107:1383–1390.PubMedCrossRefGoogle Scholar
  65. Mohty, M., Jarrossay, D., Lafage-Pochitaloff, M., Zandotti, C., Briere, F., de Lamballeri, X. N., Isnardon, D., Sainty, D., Olive, D. and Gaugler, B. 2001. Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment. Blood 98:3750–3756.PubMedCrossRefGoogle Scholar
  66. Murdoch, C., Muthana, M., Coffelt, S. B. and Lewis, C. E. 2008. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631.PubMedCrossRefGoogle Scholar
  67. Muthuswamy, R., Urban, J., Lee, J. J., Reinhart, T. A., Bartlett, D. and Kalinski, P. 2008. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res 68:5972–5978.PubMedCrossRefGoogle Scholar
  68. Naldini, A., Leali, D., Pucci, A., Morena, E., Carraro, F., Nico, B., Ribatti, D. and Presta, M. 2006. Cutting edge: IL-1beta mediates the proangiogenic activity of osteopontin-activated human monocytes. J Immunol 177:4267–4270.PubMedGoogle Scholar
  69. Nestle, F. O., Burg, G., Fah, J., Wrone-Smith, T. and Nickoloff, B. J. 1997. Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells. Am J Pathol 150:641–651.PubMedGoogle Scholar
  70. Ninomiya, T., Akbar, S. M., Masumoto, T., Horiike, N. and Onji, M. 1999. Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. J Hepatol 31:323–331.PubMedCrossRefGoogle Scholar
  71. Novitskiy, S. V., Ryzhov, S., Zaynagetdinov, R., Goldstein, A. E., Huang, Y., Tikhomirov, O. Y., Blackburn, M. R., Biaggioni, I., Carbone, D. P., Feoktistov, I. and Dikov, M. M. 2008. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112(5):1822–1831.Google Scholar
  72. O'Doherty, U., Peng, M., Gezelter, S., Swiggard, W. J., Betjes, M., Bhardwaj, N. and Steinman, R. M. 1994. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82:487–493.PubMedGoogle Scholar
  73. Okunishi, K., Dohi, M., Nakagome, K., Tanaka, R., Mizuno, S., Matsumoto, K., Miyazaki, J., Nakamura, T. and Yamamoto, K. 2005. A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J Immunol 175:4745–4753.PubMedGoogle Scholar
  74. Onishi, H., Morisaki, T., Baba, E., Kuga, H., Kuroki, H., Matsumoto, K., Tanaka, M. and Katano, M. 2002. Dysfunctional and short-lived subsets in monocyte-derived dendritic cells from patients with advanced cancer. Clin Immunol 105:286–295.PubMedCrossRefGoogle Scholar
  75. Orsini, E., Guarini, A., Chiaretti, S., Mauro, F. R. and Foa, R. 2003. The circulating dendritic cell compartment in patients with chronic lymphocytic leukemia is severely defective and unable to stimulate an effective T-cell response. Cancer Res 63:4497–4506.PubMedGoogle Scholar
  76. Parlato, S., Santini, S. M., Lapenta, C., Di Pucchio, T., Logozzi, M., Spada, M., Giammarioli, A. M., Malorni, W., Fais, S. and Belardelli, F. 2001. Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood 98:3022–3029.PubMedCrossRefGoogle Scholar
  77. Pinzon-Charry, A., Ho, C. S., Laherty, R., Maxwell, T., Walker, D., Gardiner, R. A., O'Connor, L., Pyke, C., Schmidt, C., Furnival, C. and Lopez, J. A. 2005a. A population of HLA-DR+ immature cells accumulates in the blood dendritic cell compartment of patients with different types of cancer. Neoplasia 7:1112–1122.PubMedCrossRefGoogle Scholar
  78. Pinzon-Charry, A., Maxwell, T. and Lopez, J. A. 2005b. Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83:451–461.PubMedCrossRefGoogle Scholar
  79. Pockaj, B. A., Basu, G. D., Pathangey, L. B., Gray, R. J., Hernandez, J. L., Gendler, S. J. and Mukherjee, P. 2004. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol 11:328–339.PubMedCrossRefGoogle Scholar
  80. Puig-Kroger, A., Pello, O. M., Selgas, R., Criado, G., Bajo, M. A., Sanchez-Tomero, J. A., Alvarez, V., del Peso, G., Sanchez-Mateos, P., Holmes, C., Faict, D., Lopez-Cabrera, M., Madrenas, J. and Corbi, A. L. 2003. Peritoneal dialysis solutions inhibit the differentiation and maturation of human monocyte-derived dendritic cells: effect of lactate and glucose-degradation products. J Leukoc Biol 73:482–492.PubMedCrossRefGoogle Scholar
  81. Ratta, M., Fagnoni, F., Curti, A., Vescovini, R., Sansoni, P., Oliviero, B., Fogli, M., Ferri, E., Della Cuna, G. R., Tura, S., Baccarani, M. and Lemoli, R. M. 2002. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100:230–237.PubMedCrossRefGoogle Scholar
  82. Remmel, E., Terracciano, L., Noppen, C., Zajac, P., Heberer, M., Spagnoli, G. C. and Padovan, E. 2001. Modulation of dendritic cell phenotype and mobility by tumor cells in vitro. Hum Immunol 62:39–49.PubMedCrossRefGoogle Scholar
  83. Ridolfi, R., Riccobon, A., Galassi, R., Giorgetti, G., Petrini, M., Fiammenghi, L., Stefanelli, M., Ridolfi, L., Moretti, A., Migliori, G. and Fiorentini, G. 2004. Evaluation of in vivo labelled dendritic cell migration in cancer patients. J Transl Med 2:27.PubMedCrossRefGoogle Scholar
  84. Ryzhov, S., Novitskiy, S. V., Zaynagetdinov, R., Goldstein, A. E., Carbone, D. P., Biaggioni, I., Dikov, M. M. and Feoktistov, I. 2008. Host A2B Adenosine Receptors Promote Carcinoma Growth. Neoplasia 10.Google Scholar
  85. Sallusto, F., Cella, M., Danieli, C. and Lanzavecchia, A. 1995. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182:389–400.PubMedCrossRefGoogle Scholar
  86. Sandel, M. H., Dadabayev, A. R., Menon, A. G., Morreau, H., Melief, C. J., Offringa, R., van der Burg, S. H., Janssen-van Rhijn, C. M., Ensink, N. G., Tollenaar, R. A., van de Velde, C. J. and Kuppen, P. J. 2005. Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res 11:2576–2582.PubMedCrossRefGoogle Scholar
  87. Sato, K., Kawasaki, H., Nagayama, H., Enomoto, M., Morimoto, C., Tadokoro, K., Juji, T. and Takahashi, T. A. 2000. TGF-beta 1 reciprocally controls chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors. J Immunol 164:2285–2295.PubMedGoogle Scholar
  88. Schuurhuis, D. H., Fu, N., Ossendorp, F. and Melief, C. J. 2006. Ins and outs of dendritic cells. Int Arch Allergy Immunol 140:53–72.PubMedCrossRefGoogle Scholar
  89. Schwaab, T., Schned, A. R., Heaney, J. A., Cole, B. F., Atzpodien, J., Wittke, F. and Ernstoff, M. S. 1999. In vivo description of dendritic cells in human renal cell carcinoma. J Urol 162:567–573.PubMedCrossRefGoogle Scholar
  90. Schwaab, T., Weiss, J. E., Schned, A. R. and Barth Jr, R. J. 2001. Dendritic Cell Infiltration in Colon Cancer. J Immunother 24:130–137.CrossRefGoogle Scholar
  91. Sharma, S., Stolina, M., Yang, S. C., Baratelli, F., Lin, J. F., Atianzar, K., Luo, J., Zhu, L., Lin, Y., Huang, M., Dohadwala, M., Batra, R. K. and Dubinett, S. M. 2003. Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968.PubMedGoogle Scholar
  92. Shurin, G. V., Shurin, M. R., Bykovskaia, S., Shogan, J., Lotze, M. T. and Barksdale, E. M., Jr. 2001. Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–369.PubMedGoogle Scholar
  93. Shurin, M. R. and Gabrilovich, D. I. 2001. Regulation of dendritic cell system by tumor. Cancer Res Ther Control 11:65–78.Google Scholar
  94. Shurin, M. R., Shurin, G. V., Lokshin, A., Yurkovetsky, Z. R., Gutkin, D. W., Chatta, G., Zhong, H., Han, B. and Ferris, R. L. 2006. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356.PubMedCrossRefGoogle Scholar
  95. Shurin, M. R., Yurkovetsky, Z. R., Tourkova, I. L., Balkir, L. and Shurin, G. V. 2002. Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 101:61–68.PubMedCrossRefGoogle Scholar
  96. Singh-Jasuja, H., Toes, R. E., Spee, P., Munz, C., Hilf, N., Schoenberger, S. P., Ricciardi-Castagnoli, P., Neefjes, J., Rammensee, H. G., Arnold-Schild, D. and Schild, H. 2000. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 191:1965–1974.PubMedCrossRefGoogle Scholar
  97. Sozzani, S. 2005. Dendritic cell trafficking: more than just chemokines. Cytokine Growth Factor Rev 16:581–592.PubMedCrossRefGoogle Scholar
  98. Steinman, R. M. and Inaba, K. 1999. Myeloid dendritic cells. J Leukoc Biol 66:205–208.PubMedGoogle Scholar
  99. Swiggard, W. J., Mirza, A., Nussenzweig, M. C. and Steinman, R. M. 1995. DEC-205, a 205-kDa protein abundant on mouse dendritic cells and thymic epithelium that is detected by the monoclonal antibody NLDC-145: purification, characterization, and N-terminal amino acid sequence. Cell Immunol 165:302–311.PubMedCrossRefGoogle Scholar
  100. Takayama, T., Morelli, A. E., Onai, N., Hirao, M., Matsushima, K., Tahara, H. and Thomson, A. W. 2001. Mammalian and viral IL-10 enhance C-C chemokine receptor 5 but down-regulate C-C chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J Immunol 166:7136–7143.PubMedGoogle Scholar
  101. Thurnher, M., Radmayr, C., Ramoner, R., Ebner, S., Bock, G., Klocker, H., Romani, N. and Bartsch, G. 1996. Human renal-cell carcinoma tissue contains dendritic cells. Int J Cancer 68:1–7.PubMedCrossRefGoogle Scholar
  102. Tourkova, I. L., Shurin, G. V., Chatta, G. S., Perez, L., Finke, J., Whiteside, T. L., Ferrone, S. and Shurin, M. R. 2005. Restoration by IL-15 of MHC class I antigen-processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. J Immunol 175:3045–3052.PubMedGoogle Scholar
  103. Tourkova, I. L., Shurin, G. V., Ferrone, S. and Shurin, M. R. 2009. Interferon regulatory factor 8 mediates tumor-induced inhibition of antigen processing and presentation by dendritic cells. Cancer Immunol Immunother 58:121–133.Google Scholar
  104. Tourkova, I. L., Shurin, G. V., Wei, S. and Shurin, M. R. 2007. Small rho GTPases mediate tumor-induced inhibition of endocytic activity of dendritic cells. J Immunol 178:7787–7793.PubMedGoogle Scholar
  105. Triozzi, P. L., Khurram, R., Aldrich, W. A., Walker, M. J., Kim, J. A. and Jaynes, S. 2000. Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer 89:2646–2654.PubMedCrossRefGoogle Scholar
  106. Troy, A., Davidson, P., Atkinson, C. and Hart, D. 1998a. Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer. J Urol 160:214–219.PubMedCrossRefGoogle Scholar
  107. Troy, A. J., Summers, K. L., Davidson, P. J., Atkinson, C. H. and Hart, D. N. 1998b. Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin Cancer Res 4:585–593.PubMedGoogle Scholar
  108. Turley, S. J., Inaba, K., Garrett, W. S., Ebersold, M., Unternaehrer, J., Steinman, R. M. and Mellman, I. 2000. Transport of peptide–MHC class II complexes in developing dendritic cells. Science 288:522–527.PubMedCrossRefGoogle Scholar
  109. Ueno, H., Klechevsky, E., Morita, R., Aspord, C., Cao, T., Matsui, T., Di Pucchio, T., Connolly, J., Fay, J. W., Pascual, V., Palucka, A. K. and Banchereau, J. 2007. Dendritic cell subsets in health and disease. Immunol Rev 219:118–142.PubMedCrossRefGoogle Scholar
  110. Vlad, A. M., Kettel, J. C., Alajez, N. M., Carlos, C. A. and Finn, O. J. 2004. MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 82:249–293.PubMedCrossRefGoogle Scholar
  111. Walker, S. R., Ogagan, P. D., DeAlmeida, D., Aboka, A. M. and Barksdale, E. M., Jr. 2006. Neuroblastoma impairs chemokine-mediated dendritic cell migration in vitro. J Pediatr Surg 41:260–265.PubMedCrossRefGoogle Scholar
  112. Wang, T., Niu, G., Kortylewski, M., Burdelya, L., Shain, K., Zhang, S., Bhattacharya, R., Gabrilovich, D., Heller, R., Coppola, D., Dalton, W., Jove, R., Pardoll, D. and Yu, H. 2004. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54.PubMedCrossRefGoogle Scholar
  113. Wesa, A., Kalinski, P., Kirkwood, J. M., Tatsumi, T. and Storkus, W. J. 2007. Polarized type-1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1-type antimelanoma CD4+ T cell responses in vitro. J Immunother 30:75–82.PubMedCrossRefGoogle Scholar
  114. West, M. A., Antoniou, A. N., Prescott, A. R., Azuma, T., Kwiatkowski, D. J. and Watts, C. 1999. Membrane ruffling, macropinocytosis and antigen presentation in the absence of gelsolin in murine dendritic cells. Eur J Immunol 29:3450–3455.PubMedCrossRefGoogle Scholar
  115. Whiteside, T. L., Stanson, J., Shurin, M. R. and Ferrone, S. 2004. Antigen-processing machinery in human dendritic cells: up-regulation by maturation and down-regulation by tumor cells. J Immunol 173:1526–1534.PubMedGoogle Scholar
  116. Wilson, N. S., El-Sukkari, D., Belz, G. T., Smith, C. M., Steptoe, R. J., Heath, W. R., Shortman, K. and Villadangos, J. A. 2003. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102:2187–2194.PubMedCrossRefGoogle Scholar
  117. Yanagihara, S., Komura, E., Nagafune, J., Watarai, H. and Yamaguchi, Y. 1998. EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. J Immunol 161:3096–3102.PubMedGoogle Scholar
  118. Yang, L. and Carbone, D. P. 2004. Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res 92:13–27.PubMedCrossRefGoogle Scholar
  119. Yang, L., Yamagata, N., Yadav, R., Brandon, S., Courtney, R. L., Morrow, J. D., Shyr, Y., Boothby, M., Joyce, S., Carbone, D. P. and Breyer, R. M. 2003. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 111:727–735.PubMedGoogle Scholar
  120. Yoo, J. K., Cho, J. H., Lee, S. W. and Sung, Y. C. 2002. IL-12 provides proliferation and survival signals to murine CD4+ T cells through phosphatidylinositol 3-kinase/Akt signaling pathway. J Immunol 169:3637–3643.PubMedGoogle Scholar
  121. Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., Makrigiannakis, A., Gray, H., Schlienger, K., Liebman, M. N., Rubin, S. C. and Coukos, G. 2003. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213.PubMedCrossRefGoogle Scholar
  122. Zhao, W., Darmanin, S., Fu, Q., Chen, J., Cui, H., Wang, J., Okada, F., Hamada, J., Hattori, Y., Kondo, T., Hamuro, J., Asaka, M. and Kobayashi, M. 2005. Hypoxia suppresses the production of matrix metalloproteinases and the migration of human monocyte-derived dendritic cells. Eur J Immunol 35:3468–3477.PubMedCrossRefGoogle Scholar
  123. Zinkernagel, R. M. 2000. Localization dose and time of antigens determine immune reactivity. Semin Immunol 12:163–171; discussion 257–344.PubMedCrossRefGoogle Scholar
  124. Zou, W., Machelon, V., Coulomb-L'Hermin, A., Borvak, J., Nome, F., Isaeva, T., Wei, S., Krzysiek, R., Durand-Gasselin, I., Gordon, A., Pustilnik, T., Curiel, D. T., Galanaud, P., Capron, F., Emilie, D. and Curiel, T. J. 2001. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7:1339–1346.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Hematology and Oncology, Department of MedicineVanderbilt UniversityNashvilleUSA

Personalised recommendations