Genetically Modified Dendritic Cells in Cancer Immunotherapy

  • Brian J. Morrison
  • Jason C. Steel
  • Melissa Gregory
  • John C. Morris
  • Anatoli M. Malyguine


Dendritic cells are powerful antigen-presenting cells that can generate primary cytolytic T lymphocyte responses against tumors. Consequently, there has been much interest in their application as antitumor vaccines. A number of dendritic cell-based vaccine trials targeting a variety of tumors have been conducted in different countries; however, the rate of clinical responses remains low. The majority of these studies have administered dendritic cells loaded with synthetic peptide epitopes or tumor lysates. Genetic modification of dendritic cells to express tumor antigens or immunostimulatory molecules through gene transfer or mRNA transfection offers a logical alternative with potential advantages over antigen loading in dendritic cells. In this chapter, we review the current and future prospects for genetically modified dendritic cell vaccines for cancer therapy.


Programme Death Ligand Dendritic Cell Vaccine Antitumor Vaccine Immunostimulatory Molecule Semliki Forest Virus Vector 



This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract no. N01-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government.


  1. Antonia, S. J., Mirza, N., Fricke, I., Chiappori, A., Thompson, P., Williams, N., Bepler, G., Simon, G., Janssen, W., Lee, J. H., Menander, K., Chada, S. and Gabrilovich, D. I. 2006. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12:878–887.PubMedCrossRefGoogle Scholar
  2. Arthur, J. F., Butterfield, L. H., Roth, M. D., Bui, L. A., Kiertscher, S. M., Lau, R., Dubinett, S., Glaspy, J., McBride, W. H. and Economou, J. S. 1997. A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 4:17–25.PubMedGoogle Scholar
  3. Balkir, L., Tourkova, I. L., Makarenkova, V. P., Shurin, G. V., Robbins, P. D., Yin, X. M., Chatta, G. and Shurin, M. R. 2004. Comparative analysis of dendritic cells transduced with different anti-apoptotic molecules: sensitivity to tumor-induced apoptosis. J Gene Med 6:537–544.PubMedCrossRefGoogle Scholar
  4. Bonehill, A., Tuyaerts, S., Van Nuffel, A. M., Heirman, C., Bos, T. J., Fostier, K., Neyns, B. and Thielemans, K. 2008. Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180.Google Scholar
  5. Bontkes, H. J., Kramer, D., Ruizendaal, J. J., Meijer, C. J. and Hooijberg, E. 2008. Tumor associated antigen and interleukin-12 mRNA transfected dendritic cells enhance effector function of natural killer cells and antigen specific T-cells. Clin Immunol 127:375–384.PubMedCrossRefGoogle Scholar
  6. Bronte, V., Kasic, T., Gri, G., Gallana, K., Borsellino, G., Marigo, I., Battistini, L., Iafrate, M., Prayer-Galetti, T., Pagano, F. and Viola, A. 2005. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201:1257–1268.PubMedCrossRefGoogle Scholar
  7. Caretti, E., Devarajan, K., Coudry, R., Ross, E., Clapper, M. L., Cooper, H. S. and Bellacosa, A. 2008. Comparison of RNA amplification methods and chip platforms for microarray analysis of samples processed by laser capture microdissection. J Cell Biochem 103:556–563.PubMedCrossRefGoogle Scholar
  8. Chhabra, A., Chakraborty, N. G. and Mukherji, B. 2008. Silencing of endogenous IL-10 in human dendritic cells leads to the generation of an improved CTL response against human melanoma associated antigenic epitope, MART-1 27-35. Clin Immunol 126:251–259.PubMedCrossRefGoogle Scholar
  9. Dannull, J., Su, Z., Rizzieri, D., Yang, B. K., Coleman, D., Yancey, D., Zhang, A., Dahm, P., Chao, N., Gilboa, E. and Vieweg, J. 2005. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633.PubMedCrossRefGoogle Scholar
  10. De Santo, C., Serafini, P., Marigo, I., Dolcetti, L., Bolla, M., Del Soldato, P., Melani, C., Guiducci, C., Colombo, M. P., Iezzi, M., Musiani, P., Zanovello, P. and Bronte, V. 2005. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA 102:4185–4190.PubMedCrossRefGoogle Scholar
  11. Gilboa, E. 2007. DC-based cancer vaccines. J Clin Invest 117:1195–1203.PubMedCrossRefGoogle Scholar
  12. Gilboa, E. and Vieweg, J. 2004. Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 199:251–263.PubMedCrossRefGoogle Scholar
  13. González-Carmona, M., Märten, A., Hoffmann, P., Schneider, C., Sievers, E., Schmidt-Wolf, I., Sauerbruch, T. and Caselmann, W. 2006. Patient-derived dendritic cells transduced with an a-fetoprotein-encoding adenovirus and co-cultured with autologous cytokine-induced lymphocytes induce a specific and strong immune response against hepatocellular carcinoma cells. Liver Int 26:369–379.PubMedCrossRefGoogle Scholar
  14. Grunebach, F., Kayser, K., Weck, M. M., Muller, M. R., Appel, S. and Brossart, P. 2005. Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4-1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther 12:749–756.PubMedCrossRefGoogle Scholar
  15. Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M. A., Lallas, C. D., Dahm, P., Niedzwiecki, D., Gilboa, E. and Vieweg, J. 2002. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109:409–417.PubMedGoogle Scholar
  16. Hirano, F., Kaneko, K., Tamura, H., Dong, H., Wang, S., Ichikawa, M., Rietz, C., Flies, D. B., Lau, J. S., Zhu, G., Tamada, K. and Chen, L. 2005. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65:1089–1096.PubMedGoogle Scholar
  17. Kikuchi, T. 2006. Genetically modified dendritic cells for therapeutic immunity. Tohoku J Exp Med 208:1–8.PubMedCrossRefGoogle Scholar
  18. Lizee, G., Radvanyi, L. G., Overwijk, W. W. and Hwu, P. 2006. Improving antitumor immune responses by circumventing immunoregulatory cells and mechanisms. Clin Cancer Res 12:4794–4803.PubMedCrossRefGoogle Scholar
  19. Mantovani, A., Romero, P, Palucka, AK, Marincola, FM 2008. Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371:771–783.PubMedCrossRefGoogle Scholar
  20. Mao, C. P., Hung, C. F. and Wu, T. C. 2007. Immunotherapeutic strategies employing RNA interference technology for the control of cancers. J Biomed Sci 14:15–29.PubMedCrossRefGoogle Scholar
  21. Mazzolini, G., Alfaro, C., Sangro, B., Feijoo, E., Ruiz, J., Benito, A., Tirapu, I., Arina, A., Sola, J., Herraiz, M., Lucena, F., Olague, C., Subtil, J., Quiroga, J., Herrero, I., Sadaba, B., Bendandi, M., Qian, C., Prieto, J. and Melero, I. 2005. Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J Clin Oncol 23:999–1010.PubMedCrossRefGoogle Scholar
  22. Melero, I., Duarte, M., Ruiz, J., Sangro, B., Galofre, J., Mazzolini, G., Bustos, M., Qian, C. and Prieto, J. 1999. Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas. Gene Ther 6:1779–1784.PubMedCrossRefGoogle Scholar
  23. Ménard, C., Martin, F., Apetoh, L., Bouyer, F. and Ghiringhelli, F. 2008. Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother. Epub ahead of print.Google Scholar
  24. Metharom, P., Ellem, K. A., Schmidt, C. and Wei, M. Q. 2001. Lentiviral vector-mediated tyrosinase-related protein 2 gene transfer to dendritic cells for the therapy of melanoma. Hum Gene Ther 12:2203–2213.PubMedCrossRefGoogle Scholar
  25. Midgley, R. and Kerr, D. 2005. Bevacizumab--current status and future directions. Ann Oncol 16:999–1004.PubMedCrossRefGoogle Scholar
  26. Morandi, F., Chiesa, S., Bocca, P., Millo, E., Salis, A., Solari, M., Pistoia, V. and Prigione, I. 2006. Tumor mRNA-transfected dendritic cells stimulate the generation of CTL that recognize neuroblastoma-associated antigens and kill tumor cells: immunotherapeutic implications. Neoplasia 8:833–842.PubMedCrossRefGoogle Scholar
  27. Morse, M. A., Clay, T. M., Hobeika, A. C., Osada, T., Khan, S., Chui, S., Niedzwiecki, D., Panicali, D., Schlom, J. and Lyerly, H. K. 2005. Phase I study of immunization with dendritic cells modified with fowlpox encoding carcinoembryonic antigen and costimulatory molecules. Clin Cancer Res 11:3017–3024.PubMedCrossRefGoogle Scholar
  28. Morse, M. A., Nair, S. K., Mosca, P. J., Hobeika, A. C., Clay, T. M., Deng, Y., Boczkowski, D., Proia, A., Neidzwiecki, D., Clavien, P. A., Hurwitz, H. I., Schlom, J., Gilboa, E. and Lyerly, H. K. 2003. Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Invest 21:341–349.PubMedCrossRefGoogle Scholar
  29. Nencioni, A., Grunebach, F., Schmidt, S., Muller, M., Boy, D., Patrone, F., Ballestrero, A. and Brossart, P. 2008. The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol 65:191–199.PubMedCrossRefGoogle Scholar
  30. Ni, X., Richmond, H. M., Liao, X. M., Decker, W. K., Shiue, L. H., Shpall, E. J. and Duvic, M. 2008. Induction of T-cell responses against cutaneous T-cell lymphomas ex vivo by autologous dendritic cells transfected with amplified tumor mRNA. J Invest Dermatol 128:2631–2639.Google Scholar
  31. Ojima, T., Iwahashi, M., Nakamura, M., Matsuda, K., Nakamori, M., Ueda, K., Naka, T., Ishida, K., Primus, F. J. and Yamaue, H. 2007a. Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)-expressing colon cancer using genetically modified dendritic cells that express CEA and T helper-type 1 cytokines in CEA transgenic mice. Int J Cancer 120:585–593.PubMedCrossRefGoogle Scholar
  32. Ojima, T., Iwahashi, M., Nakamura, M., Matsuda, K., Nakamori, M., Ueda, K., Naka, T., Katsuda, M., Miyazawa, M. and Yamaue, H. 2007b. Benefits of gene transduction of granulocyte macrophage colony-stimulating factor in cancer vaccine using genetically modified dendritic cells. Int J Oncol 31:931–939.PubMedGoogle Scholar
  33. Osada, T., Chong, G., Tansik, R., Hong, T., Spector, N., Kumar, R., Hurwitz, H. I., Dev, I., Nixon, A. B., Lyerly, H. K., Clay, T. and Morse, M. A. 2008. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57:1115–1124.PubMedCrossRefGoogle Scholar
  34. Osada, T., Clay, T., Hobeika, A., Lyerly, H. K. and Morse, M. A. 2006. NK cell activation by dendritic cell vaccine: a mechanism of action for clinical activity. Cancer Immunol Immunother 55:1122–1131.PubMedCrossRefGoogle Scholar
  35. Palucka, A. K., Ueno, H., Fay, J. W. and Banchereau, J. 2007. Taming cancer by inducing immunity via dendritic cells. Immunol Rev 220:129–150.PubMedCrossRefGoogle Scholar
  36. Phan, G. Q., Yang, J. C., Sherry, R. M., Hwu, P., Topalian, S. L., Schwartzentruber, D. J., Restifo, N. P., Haworth, L. R., Seipp, C. A., Freezer, L. J., Morton, K. E., Mavroukakis, S. A., Duray, P. H., Steinberg, S. M., Allison, J. P., Davis, T. A. and Rosenberg, S. A. 2003. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377.PubMedCrossRefGoogle Scholar
  37. Rabinovich, G. A., Gabrilovich, D. and Sotomayor, E. M. 2007. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296.PubMedCrossRefGoogle Scholar
  38. Ribas, A. 2005. Genetically modified dendritic cells for cancer immunotherapy. Cur Gene Ther 5:619–628.CrossRefGoogle Scholar
  39. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. and Dudley, M. E. 2008. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308.PubMedCrossRefGoogle Scholar
  40. Rosenberg, S. A., Yang, J. C. and Restifo, N. P. 2004. Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915.PubMedCrossRefGoogle Scholar
  41. Sakai, Y., Morrison, B. J., Burke, J. D., Park, J. M., Terabe, M., Janik, J. E., Forni, G., Berzofsky, J. A. and Morris, J. C. 2004. Vaccination by genetically modified dendritic cells expressing a truncated neu oncogene prevents development of breast cancer in transgenic mice. Cancer Res 64:8022–8028.PubMedCrossRefGoogle Scholar
  42. Su, Z., Dannull, J., Yang, B. K., Dahm, P., Coleman, D., Yancey, D., Sichi, S., Niedzwiecki, D., Boczkowski, D., Gilboa, E. and Vieweg, J. 2005. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T-cell responses in patients with metastatic prostate cancer. J Immunol 174:3798–3807.PubMedGoogle Scholar
  43. Tong, X. M., Zheng, S. E., Bader, A., Yao, H. P., Wu, N. P., Altmeyer, P., Brockmeyer, N. H. and Jin, J. 2008. Construction of expression vector of hTERT- hIL18 fusion gene and induction of cytotoxic T lymphocyte response against hTERT. Eur J Med Res 13:7–14.PubMedGoogle Scholar
  44. Tyagi, P. 2005. First-line treatment with bevacizumab and paclitaxel prolongs progression-free survival in metastatic breast cancer. Clin Breast Cancer 6:105–107.CrossRefGoogle Scholar
  45. Van Tendeloo, V. F., Ponsaerts, P., Lardon, F., Nijs, G., Lenjou, M., Van Broeckhoven, C., Van Bockstaele, D. R. and Berneman, Z. N. 2001. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98:49–56.PubMedCrossRefGoogle Scholar
  46. Vujanovic, L., Ranieri, E., Gambotto, A., Olson, W. C., Kirkwood, J. M. and Storkus, W. J. 2006. IL-12p70 and IL-18 gene-modified dendritic cells loaded with tumor antigen-derived peptides or recombinant protein effectively stimulate specific Type-1 CD4+ T-cell responses from normal donors and melanoma patients in vitro. Cancer Gene Ther 13:798–805.PubMedCrossRefGoogle Scholar
  47. Vulink, A., Radford, K. J., Melief, C. and Hart, D. N. 2008. Dendritic cells in cancer immunotherapy. Adv Cancer Res 99:363–407.PubMedCrossRefGoogle Scholar
  48. Wargo, J., Schumacher, L., Comin-Anduix, B., Dissette, V., Glaspy, J., McBride, W., Butterfield, L., Economou, J. and Ribas, A. 2005. Natural killer cells play a critical role in the immune response following immunization with melanoma-antigen-engineered dendritic cells. Cancer Gene Ther 12:516–527.PubMedCrossRefGoogle Scholar
  49. Woo, C. Y., Clay, T. M., Lyerly, H. K., Morse, M. A. and Osada, T. 2006. Role of natural killer cell function in dendritic cell-based vaccines. Expert Rev Vaccines 5:55–65.PubMedCrossRefGoogle Scholar
  50. Woo, E. Y., Yeh, H., Chu, C. S., Schlienger, K., Carroll, R. G., Riley, J. L., Kaiser, L. R. and June, C. H. 2002. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168:4272–4276.PubMedGoogle Scholar
  51. Yamanaka, R., Zullo, S. A., Ramsey, J., Yajima, N., Tsuchiya, N., Tanaka, R., Blaese, M. and Xanthopoulos, K. G. 2002. Marked enhancement of antitumor immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virus-mediated interleukin-12. J Neurosurg 97:611–618.PubMedCrossRefGoogle Scholar
  52. Zhang, H. M., Zhang, L. W., Ren, J., Fan, L., Si, X. M. and Liu, W. C. 2006. Induction of alpha-fetoprotein-specific CD4- and CD8-mediated T-cell response using RNA-transfected dendritic cells. Cell Immunol 239:144–150.PubMedCrossRefGoogle Scholar
  53. Zhong, H., Shurin, M. R. and Han, B. 2007. Optimizing dendritic cell-based immunotherapy for cancer. Expert Rev Vaccines 6:333–345.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Brian J. Morrison
  • Jason C. Steel
  • Melissa Gregory
  • John C. Morris
  • Anatoli M. Malyguine
    • 1
  1. 1.Laboratory of Cell Mediated Immunity, CSP, SAIC-Frederick, IncNational Cancer Institute at FrederickFrederickUSA

Personalised recommendations