How Best to Generate Dendritic Cells from Patients with Cancer and How Best to Use them for Immunotherapeutic Purposes

  • Mark M. Aloysius
  • Richard A. Robins
  • Oleg Eremin


The purpose of vaccinating patients with cancer is to achieve objective tumor regression or stasis, in contrast to vaccination strategy in infectious diseases, where it is primarily preventive in nature. Anti-cancer vaccines are designed to maximally induce and sustain host immune responses targeted against tumor antigens, leading to subsequent cancer cell death. Most cancer immunotherapy trials have been performed in patients with advanced cancers, in whom established therapies are usually ineffective or the patient has run out of therapeutic options. Such a therapeutic immunity is clearly more challenging to generate and sustain, compared with preventive immunity, as active immune surveillance and constant targeting of the tumor is required. As dendritic cells are the most potent antigen-presenting cells that sensitize naive T cells to antigen, designing cancer vaccines using the patient’s own autologous dendritic cells is a logical and core concept in cancer immunotherapy, which continues to be an area of major interest and therapeutic challenge for both clinicians and scientists.


Gastric Cancer Human Leukocyte Antigen Tumor Antigen Tumor Lysate Cancer Immunotherapy Trial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



MMA is a recipient of a research grant from the Royal College of Surgeons of Edinburgh. We gratefully acknowledge financial support from the following: Candles (Lincolnshire), Friends of Lincoln hospital, Boston Leukaemia Research Fund, and Rosetrees Trust.


  1. Aloysius, M. M., Robins, R. A., Eremin, J. M. and Eremin, O. 2006. Vaccination therapy in malignant disease. Surgeon 4:309–320.PubMedCrossRefGoogle Scholar
  2. Aloysius, M., Verma C. and Eremin, O. 2008. Targeting human telomerase reverse transcriptase: a promising anticancer immunotherapeutic approach. Cancer Chemother Rev 3:35.Google Scholar
  3. BioDrugs 2002. Cancer vaccine – antigenics. BioDrugs 16:72–74.CrossRefGoogle Scholar
  4. Boullart, A. C., Aarntzen, E. H., Verdijk, P., Jacobs, J. F., Schuurhuis, D. H., Benitez-Ribas, D., Schreibelt, G., van de Rakt, M. W., Scharenborg, N. M., de Boer, A., Kramer, M., Figdor, C. G., Punt, C. J., Adema, G. J. and de Vries, I. J. 2008. Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E(2) results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 57:1589–1597.PubMedCrossRefGoogle Scholar
  5. Brossart, P., Stuhler, G., Flad, T., Stevanovic, S., Rammensee, H. G., Kanz, L. and Brugger, W. 1998. Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res 58:732–736.PubMedGoogle Scholar
  6. Butterfield, L. H., Gooding, W. and Whiteside, T. L. 2008. Development of a potency assay for human dendritic cells: IL-12p70 production. J Immunother 31:89–100.PubMedCrossRefGoogle Scholar
  7. Casati, C., Dalerba, P., Rivoltini, L., Gallino, G., Deho, P., Rini, F., Belli, F., Mezzanzanica, D., Costa, A., Andreola, S., Leo, E., Parmiani, G. and Castelli, C. 2003. The apoptosis inhibitor protein survivin induces tumor-specific CD8+ and CD4+ T cells in colorectal cancer patients. Cancer Res 63:4507–4515.PubMedGoogle Scholar
  8. Caux, C., Dezutter-Dambuyant, C., Schmitt, D. and Banchereau, J. 1992. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360: 258–261.PubMedCrossRefGoogle Scholar
  9. Chan, R. C., Pang, X. W., Wang, Y. D., Chen, W. F. and Xie, Y. 2004. Transduction of dendritic cells with recombinant adenovirus encoding HCA661 activates autologous cytotoxic T lymphocytes to target hepatoma cells. Br J Cancer 90:1636–1643.PubMedCrossRefGoogle Scholar
  10. Datta, S. K. and Raz, E. 2005. Induction of antigen cross-presentation by Toll-like receptors. Springer Semin Immunopathol 26:247–255.PubMedCrossRefGoogle Scholar
  11. Dauer, M., Obermaier, B., Herten, J., Haerle, C., Pohl, K., Rothenfusser, S., Schnurr, M., Endres, S. and Eigler, A. 2003. Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J Immunol 170:4069–4076.PubMedGoogle Scholar
  12. Dauer, M., Schad, K., Junkmann, J., Bauer, C., Herten, J., Kiefl, R., Schnurr, M., Endres, S. and Eigler, A. 2006. IFN-alpha promotes definitive maturation of dendritic cells generated by short-term culture of monocytes with GM-CSF and IL-4. J Leukoc Biol 80:278–286.PubMedCrossRefGoogle Scholar
  13. Elias, M., van Zanten, J., Hospers, G. A., Setroikromo, A., de Jong, M. A., de Leij, L. F. and Mulder, N. H. 2005. Closed system generation of dendritic cells from a single blood volume for clinical application in immunotherapy. J Clin Apher 20:197–207.Google Scholar
  14. Eppler, E., Horig, H., Kaufman, H. L., Groscurth, P. and Filgueira, L. 2002. Carcinoembryonic antigen (CEA) presentation and specific T cell-priming by human dendritic cells transfected with CEA-mRNA. Eur J Cancer 38:184–193.PubMedCrossRefGoogle Scholar
  15. Figdor, C. G., de Vries, I. J., Lesterhuis, W. J. and Melief, C. J. 2004. Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480.PubMedCrossRefGoogle Scholar
  16. Freudenthal, P. S. and Steinman, R. M. 1990. The distinct surface of human blood dendritic cells, as observed after an improved isolation method. Proc Natl Acad Sci USA 87:7698–7702.PubMedCrossRefGoogle Scholar
  17. Fuessel, S., Meye, A., Schmitz, M., Zastrow, S., Linne, C., Richter, K., Lobel, B., Hakenberg, O. W., Hoelig, K., Rieber, E. P. and Wirth, M. P. 2006. Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: results of a phase I clinical trial. Prostate 66:811–821.PubMedCrossRefGoogle Scholar
  18. Gabrilovich, D. 2004. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952.PubMedCrossRefGoogle Scholar
  19. Gao, J., Chen, M. and Ren, H. 2005. [Clinical effects of dendritic cells pulsed with autologous hepatoma cell lysates on the postoperative recurrence and metastasis of hepatocellular carcinoma]. Zhonghua Gan Zang Bing Za Zhi 13:432–435.PubMedGoogle Scholar
  20. Guan, X., Peng, J. R. and Leng, X. S. 2005. [Establishment of dendritomas by fusion of human dendritic cells with human hepatocellular carcinoma cell line HLE cells]. Zhonghua Zhong Liu Za Zhi 27:465–467.PubMedGoogle Scholar
  21. Guan, X., Peng, J. R., Yuan, L., Wang, H., Wei, Y. H. and Leng, X. S. 2004. A novel, rapid strategy to form dendritomas from human dendritic cells and hepatocellular carcinoma cell line HCCLM3 cells using mature dendritic cells derived from human peripheral blood CD14+ monocytes within 48 hours of in vitro culture. World J Gastroenterol 10:3564–3568.PubMedGoogle Scholar
  22. Hoffmann, T. K., Muller-Berghaus, J., Ferris, R. L., Johnson, J. T., Storkus, W. J. and Whiteside, T. L. 2002. Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin Cancer Res 8:1787–1793.PubMedGoogle Scholar
  23. Imura, K., Hayashi, T., Yano, Y., Naito, K., Kouhara, J., Ueda, Y., Nakane, K., Matsuura, Y., Takeda, A., Takeda, T., Kawai, K. and Yamagishi, H. 2004. Immunogenic reactivity of CTLs induced by electrofusion cells of human dendritic cells and gastric cancer cells. Gan To Kagaku Ryoho 31:1797–1799.PubMedGoogle Scholar
  24. Inoue, N., Yamasaki, S., Kondo, K., Kan, T., Furumoto, K. and Imamura, M. 2003. Dendritic cells coinjected with tumor cells treated with an anticancer drug to induce tumor rejection. Surg Today 33:269–276.PubMedCrossRefGoogle Scholar
  25. Itoh, T., Ueda, Y., Okugawa, K., Fujiwara, H., Fuji, N., Yamashita, T., Fujiki, H., Harada, S., Yoshimura, T. and Yamagishi, H. 2003. Streptococcal preparation OK432 promotes functional maturation of human monocyte-derived dendritic cells. Cancer Immunol Immunother 52:207–214.PubMedGoogle Scholar
  26. Kalady, M. F., Onaitis, M. W., Emani, S., Abdul-Wahab, Z., Pruitt, S. K. and Tyler, D. S. 2004. Dendritic cells pulsed with pancreatic cancer total tumor RNA generate specific antipancreatic cancer T cells. J Gastrointest Surg 8:175–181; discussion 181–182.PubMedCrossRefGoogle Scholar
  27. Kalinski, P., Vieira, P. L., Schuitemaker, J. H., de Jong, E. C. and Kapsenberg, M. L. 2001. Prostaglandin E(2) is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood 97:3466–3469.PubMedCrossRefGoogle Scholar
  28. Kanaoka, S., Yamasaki, S., Okino, T., Inoue, N., Shimada, Y., Kaneko, M., Otaka, A., Fujii, N. and Imamura, M. 1999. Induction of human leukocyte antigen (HLA)-A2-restricted and MAGE-3-gene-derived peptide-specific cytolytic T lymphocytes using cultured dendritic cells from an HLA-A2 esophageal cancer patient. J Surg Oncol 71:16–21.PubMedCrossRefGoogle Scholar
  29. Kao, J. Y., Gong, Y., Chen, C. M., Zheng, Q. D. and Chen, J. J. 2003. Tumor-derived TGF-beta reduces the efficacy of dendritic cell/tumor fusion vaccine. J Immunol 170:3806–3811.PubMedGoogle Scholar
  30. Kim, C. H., Todoroki, T., Matsumura, M. and Ohno, T. 2000. Eligibility of antigenic-peptide-pre-loaded and fixed adhesive peripheral blood cells for induction of cytotoxic T lymphocytes from cancer patients with elevated serum levels of carcinoembryonic antigen. J Cancer Res Clin Oncol 126:383–390.PubMedCrossRefGoogle Scholar
  31. Kono, K., Takahashi, A., Sugai, H., Fujii, H., Choudhury, A. R., Kiessling, R. and Matsumoto, Y. 2002. Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin Cancer Res 8:3394–3400.PubMedGoogle Scholar
  32. Kumagi, T., Akbar, S. M., Horiike, N., Kurose, K., Hirooka, M., Hiraoka, A., Hiasa, Y., Michitaka, K. and Onji, M. 2005. Administration of dendritic cells in cancer nodules in hepatocellular carcinoma. Oncol Rep 14:969–973.PubMedGoogle Scholar
  33. Ladhams, A., Schmidt, C., Sing, G., Butterworth, L., Fielding, G., Tesar, P., Strong, R., Leggett, B., Powell, L., Maddern, G., Ellem, K. and Cooksley, G. 2002. Treatment of non-resectable hepatocellular carcinoma with autologous tumor-pulsed dendritic cells. J Gastroenterol Hepatol 17:889–896.PubMedCrossRefGoogle Scholar
  34. Langenkamp, A., Messi, M., Lanzavecchia, A. and Sallusto, F. 2000. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1:311–316.PubMedCrossRefGoogle Scholar
  35. Lee, W. C., Wang, H. C., Hung, C. F., Huang, P. F., Lia, C. R. and Chen, M. F. 2005. Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trial. J Immunother 28:496–504.PubMedCrossRefGoogle Scholar
  36. Liu, B. Y., Chen, X. H., Gu, Q. L., Li, J. F., Yin, H. R., Zhu, Z. G. and Lin, Y. Z. 2004. Antitumor effects of vaccine consisting of dendritic cells pulsed with tumor RNA from gastric cancer. World J Gastroenterol 10:630–633.PubMedGoogle Scholar
  37. Margalit, M., Shibolet, O., Klein, A., Elinav, E., Alper, R., Thalenfeld, B., Engelhardt, D., Rabbani, E. and Ilan, Y. 2005. Suppression of hepatocellular carcinoma by transplantation of ex-vivo immune-modulated NKT lymphocytes. Int J Cancer 115:443–449.PubMedCrossRefGoogle Scholar
  38. Marten, A., Schottker, B., Ziske, C., Weineck, S., Buttgereit, P., Huhn, D., Sauerbruch, T. and Schmidt-Wolf, I. G. 2000. Increase of the immunostimulatory effect of dendritic cells by pulsing with CA 19-9 protein. J Immunother 23:464–472.PubMedCrossRefGoogle Scholar
  39. McConnell, E. J., Pathangey, L. B., Madsen, C. S., Gendler, S. J. and Mukherjee, P. 2002. Dendritic cell-tumor cell fusion and staphylococcal enterotoxin B treatment in a pancreatic tumor model. J Surg Res 107:196–202.PubMedCrossRefGoogle Scholar
  40. Morse, M. A., Nair, S. K., Boczkowski, D., Tyler, D., Hurwitz, H. I., Proia, A., Clay, T. M., Schlom, J., Gilboa, E. and Lyerly, H. K. 2002. The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int J Gastrointest Cancer 32:1–6.PubMedCrossRefGoogle Scholar
  41. Nagao, N., Katoh, M., Kumazawa, I., Tomita, H., Sugiyama, Y., Kunieda, K., Miya, K. and Saji, S. 1999. A recurrent case of esophageal cancer in which metastatic skin tumor disappeared after local injection of activated lymphocytes with tumor-pulsed dendritic cells. Gan To Kagaku Ryoho 26:1937–1939.PubMedGoogle Scholar
  42. Nair, S. K., Morse, M., Boczkowski, D., Cumming, R. I., Vasovic, L., Gilboa, E. and Lyerly, H. K. 2002. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235:540–549.PubMedCrossRefGoogle Scholar
  43. Nakamori, M., Iwahashi, M., Tani, M., Yamaue, H., Ueda, K., Matsuda, K. and Tanimura, H. 2000. New therapeutic strategy against colon cancer based on a tumor-specific approach. Gan To Kagaku Ryoho 27:2209–2215.PubMedGoogle Scholar
  44. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. and Lanzavecchia, A. 2005. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6:769–776.PubMedCrossRefGoogle Scholar
  45. Nencioni, A., Muller, M. R., Grunebach, F., Garuti, A., Mingari, M. C., Patrone, F., Ballestrero, A. and Brossart, P. 2003. Dendritic cells transfected with tumor RNA for the induction of antitumor CTL in colorectal cancer. Cancer Gene Ther 10:209–214.PubMedCrossRefGoogle Scholar
  46. O'Doherty, U., Steinman, R. M., Peng, M., Cameron, P. U., Gezelter, S., Kopeloff, I., Swiggard, W. J., Pope, M. and Bhardwaj, N. 1993. Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium. J Exp Med 178:1067–1076.PubMedCrossRefGoogle Scholar
  47. Ohshita, A., Yamaguchi, Y., Minami, K., Miyahara, E., Kawabuchi, Y., Shimizu, K., Ohta, K., Hihara, J. and Toge, T. 2003. Generation of TRiDAK (tumor RNA-introduced dendritic cell-activated killer) cells. Gan To Kagaku Ryoho 30:1809–1812.PubMedGoogle Scholar
  48. Ohta, K., Yamaguchi, Y., Shimizu, K., Miyahara, E. and Toge, T. 2002. Novel system for generating cytotoxic effector lymphocytes using carcinoembryonic antigen (CEA) peptide and cultured dendritic cells. Anticancer Res 22:2597–2606.PubMedGoogle Scholar
  49. Okuzawa, M., Shinohara, H., Kobayashi, T., Iwamoto, M., Toyoda, M. and Tanigawa, N. 2002. PSK, a protein-bound polysaccharide, overcomes defective maturation of dendritic cells exposed to tumor-derived factors in vitro. Int J Oncol 20:1189–1195.PubMedGoogle Scholar
  50. Ozzello, L., Habif, D. V., De Rosa, C. M. and Cantell, K. 1992. Cellular events accompanying regression of skin recurrences of breast carcinomas treated with intralesional injections of natural interferons alpha and gamma. Cancer Res 52:4571–4581.PubMedGoogle Scholar
  51. Pedersen, A. E., Thorn, M., Gad, M., Walter, M. R., Johnsen, H. E., Gaarsdal, E., Nikolajsen, K., Buus, S., Claesson, M. H. and Svane, I. M. 2005. Phenotypic and functional characterization of clinical grade dendritic cells generated from patients with advanced breast cancer for therapeutic vaccination. Scand J Immunol 61:147–156.PubMedCrossRefGoogle Scholar
  52. Peiper, M., Goedegebuure, P. S. and Eberlein, T. J. 1997. Generation of peptide-specific cytotoxic T lymphocytes using allogeneic dendritic cells capable of lysing human pancreatic cancer cells. Surgery 122:235–241; discussion 241–242.PubMedCrossRefGoogle Scholar
  53. Pullarkat, V., Lau, R., Lee, S. M., Bender, J. G. and Weber, J. S. 2002. Large-scale monocyte enrichment coupled with a closed culture system for the generation of human dendritic cells. J Immunol Methods 267:173–183.PubMedCrossRefGoogle Scholar
  54. Radvanyi, L. G., Banerjee, A., Weir, M. and Messner, H. 1999. Low levels of interferon-alpha induce CD86 (B7.2) expression and accelerates dendritic cell maturation from human peripheral blood mononuclear cells. Scand J Immunol 50:499–509.PubMedCrossRefGoogle Scholar
  55. Rains, N., Cannan, R. J., Chen, W. and Stubbs, R. S. 2001. Development of a dendritic cell (DC)-based vaccine for patients with advanced colorectal cancer. Hepatogastroenterology 48:347–351.PubMedGoogle Scholar
  56. Reed, J. C. and Wilson, D. B. 2003. Cancer immunotherapy targeting survivin: commentary re: V. Pisarev et al., full-length dominant-negative survivin for cancer immunotherapy. Clin Cancer Res 9:6523–6533. Clin Cancer Res 9:6310–6315.Google Scholar
  57. Rouard, H., Leon, A., De Reys, S., Taylor, L., Logan, J., Marquet, J., Jouault, H., Loper, K., Maison, P., Delfau-Larue, M. H., Beaujean, F., Farcet, J. P. and Noga, S. J. 2003. A closed and single-use system for monocyte enrichment: potential for dendritic cell generation for clinical applications. Transfusion 43:481–487.PubMedCrossRefGoogle Scholar
  58. Sallusto, F. and Lanzavecchia, A. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118.PubMedCrossRefGoogle Scholar
  59. Sato, A. and Iwasaki, A. 2004. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments. Proc Natl Acad Sci U S A 101:16274–16279.PubMedCrossRefGoogle Scholar
  60. Satthaporn, S., Aloysius, M. M., Robins, R. A., Verma, C., Chuthapisith, S., McKechnie, A. J., El-Sheemy, M., Vassanasiri, W., Valerio, D., Clark, D., Jibril, J. A. and Eremin, O. 2008. Ex vivo recovery and activation of dysfunctional, anergic, monocyte-derived dendritic cells from patients with operable breast cancer: critical role of IFN-alpha. BMC Immunol 9:32.PubMedCrossRefGoogle Scholar
  61. Satthaporn, S., Robins, A., Vassanasiri, W., El-Sheemy, M., Jibril, J. A., Clark, D., Valerio, D. and Eremin, O. 2004. Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunother 53:510–518.PubMedCrossRefGoogle Scholar
  62. Savary, C. A., Grazziutti, M. L., Melichar, B., Przepiorka, D., Freedman, R. S., Cowart, R. E., Cohen, D. M., Anaissie, E. J., Woodside, D. G., McIntyre, B. W., Pierson, D. L., Pellis, N. R. and Rex, J. H. 1998. Multidimensional flow-cytometric analysis of dendritic cells in peripheral blood of normal donors and cancer patients. Cancer Immunol Immunother 45:234–240.PubMedCrossRefGoogle Scholar
  63. Schmitz, M., Diestelkoetter, P., Weigle, B., Schmachtenberg, F., Stevanovic, S., Ockert, D., Rammensee, H. G. and Rieber, E. P. 2000. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res 60:4845–4849.PubMedGoogle Scholar
  64. Schueller, G., Stift, A., Friedl, J., Dubsky, P., Bachleitner-Hofmann, T., Benkoe, T., Jakesz, R. and Gnant, M. 2003. Hyperthermia improves cellular immune response to human hepatocellular carcinoma subsequent to co-culture with tumor lysate pulsed dendritic cells. Int J Oncol 22:1397–1402.PubMedGoogle Scholar
  65. Shiku, H., Wang, L., Ikuta, Y., Okugawa, T., Schmitt, M., Gu, X., Akiyoshi, K., Sunamoto, J. and Nakamura, H. 2000. Development of a cancer vaccine: peptides, proteins, and DNA. Cancer Chemother Pharmacol 46Suppl:S77–82.PubMedCrossRefGoogle Scholar
  66. Shimamura, H., Sunamura, M., Tsuchihara, K., Egawa, S., Takeda, K. and Matsuno, S. 2005. Irradiated pancreatic cancer cells undergo both apoptosis and necrosis, and could be phagocytized by dendritic cells. Eur Surg Res 37:228–234.PubMedCrossRefGoogle Scholar
  67. Sorg, R. V., Ozcan, Z., Brefort, T., Fischer, J., Ackermann, R., Muller, M. and Wernet, P. 2003. Clinical-scale generation of dendritic cells in a closed system. J Immunother 26:374–383.PubMedCrossRefGoogle Scholar
  68. Sporri, R. and Reis e Sousa, C. 2005. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat Immunol 6:163–170.PubMedCrossRefGoogle Scholar
  69. Stift, A., Friedl, J., Dubsky, P., Bachleitner-Hofmann, T., Benkoe, T., Brostjan, C., Jakesz, R. and Gnant, M. 2003. In vivo induction of dendritic cell-mediated cytotoxicity against allogeneic pancreatic carcinoma cells. Int J Oncol 22:651–656.PubMedGoogle Scholar
  70. Strobl, H., Riedl, E., Scheinecker, C., Bello-Fernandez, C., Pickl, W. F., Majdic, O. and Knapp, W. 1997. TGF-beta 1 dependent generation of LAG+ dendritic cells from CD34+ progenitors in serum-free medium. Adv Exp Med Biol 417:161–165.PubMedGoogle Scholar
  71. Strobl, H., Riedl, E., Scheinecker, C., Bello-Fernandez, C., Pickl, W. F., Rappersberger, K., Majdic, O. and Knapp, W. 1996. TGF-beta 1 promotes in vitro development of dendritic cells from CD34+ hemopoietic progenitors. J Immunol 157:1499–1507.PubMedGoogle Scholar
  72. Strunk, D., Rappersberger, K., Egger, C., Strobl, H., Kromer, E., Elbe, A., Maurer, D. and Stingl, G. 1996. Generation of human dendritic cells/Langerhans cells from circulating CD34+ hematopoietic progenitor cells. Blood 87:1292–1302.PubMedGoogle Scholar
  73. Sun, H. W., Tang, C., Tang, Q. B., Zou, S. Q. and Qiu, F. Z. 2005. Study of immunological effect of dendritic cell transfected with survivin gene on the specific anti-alimentary tract tumor. Zhonghua Wai Ke Za Zhi 43:313–316.PubMedGoogle Scholar
  74. Sun, H. W., Tang, Q. B., Cheng, Y. J. and Zou, S. Q. 2004. Effects of dendritic cells transfected with full-length wild-type p53 and stimulated by gastric cancer lysates on immune response. World J Gastroenterol 10:2595–2597.PubMedGoogle Scholar
  75. Syme, R., Bajwa, R., Robertson, L., Stewart, D. and Gluck, S. 2005. Comparison of CD34 and monocyte-derived dendritic cells from mobilized peripheral blood from cancer patients. Stem Cells 23:74–81.PubMedCrossRefGoogle Scholar
  76. Szabolcs, P., Feller, E. D., Moore, M. A. and Young, J. W. 1995a. Progenitor recruitment and in vitro expansion of immunostimulatory dendritic cells from human CD34+ bone marrow cells by c-kit-ligand, GM-CSF, and TNF alpha. Adv Exp Med Biol 378:17–20.PubMedCrossRefGoogle Scholar
  77. Szabolcs, P., Moore, M. A. and Young, J. W. 1995b. Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit ligand, granulocyte-macrophage colony-stimulating factor, and TNF-alpha. J Immunol 154:5851–5861.PubMedGoogle Scholar
  78. Tamir, A., Jordan, W. J., Ritter, M., Habib, N., Lechler, R. I., Foster, G. R. and Lombardi, G. 2005. Interferon-alpha2a is sufficient for promoting dendritic cell immunogenicity. Clin Exp Immunol 142:471–480.PubMedGoogle Scholar
  79. Thomas, R., Davis, L. S. and Lipsky, P. E. 1993. Isolation and characterization of human peripheral blood dendritic cells. J Immunol 150:821–834.PubMedGoogle Scholar
  80. Van Voorhis, W. C., Valinsky, J., Hoffman, E., Luban, J., Hair, L. S. and Steinman, R. M. 1983. Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication. J Exp Med 158:174–191.PubMedCrossRefGoogle Scholar
  81. Wang, X. H., Qin, Y., Hu, M. H. and Xie, Y. 2005a. Dendritic cells pulsed with gp96-peptide complexes derived from human hepatocellular carcinoma (HCC) induce specific cytotoxic T lymphocytes. Cancer Immunol Immunother 54:971–980.PubMedCrossRefGoogle Scholar
  82. Wang, X. H., Qin, Y., Hu, M. H. and Xie, Y. 2005b. Dendritic cells pulsed with hsp70-peptide complexes derived from human hepatocellular carcinoma induce specific anti-tumor immune responses. World J Gastroenterol 11:5614–5620.PubMedGoogle Scholar
  83. Wu, G., Han, B. L. and Pei, X. T. 2003. Immune response of dendritic cells acquiring antigens from apoptotic cholangiocarcinoma cells induced by mitomycin. Zhonghua Gan Zang Bing Za Zhi 11:149–152.PubMedGoogle Scholar
  84. Xu, F., Ye, Y. J., Cui, Z. R. and Wang, S. 2005. Allogeneic dendritomas induce anti-tumour immunity against metastatic colon cancer. Scand J Immunol 61:364–369.PubMedCrossRefGoogle Scholar
  85. Xu, F., Ye, Y. J. and Wang, S. 2004. In vitro antitumor immune response induced by fusion of dendritic cells and colon cancer cells. World J Gastroenterol 10:1162–1166.PubMedGoogle Scholar
  86. Yang, J. Y., Ren, J., Bai, J., Liu, D. H., Fan, L., Si, X. M., Teng, Z. H. and Yang, W. T. 2004. Cytotoxicity induced by HBsAg gene modified-dendritic cells against hepatocellular carcinoma cell HepG2.2.15. Ai Zheng 23:914–917.PubMedGoogle Scholar
  87. Young, J. W., Szabolcs, P. and Moore, M. A. 1995. Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J Exp Med 182:1111–1119.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mark M. Aloysius
  • Richard A. Robins
  • Oleg Eremin
    • 1
  1. 1.Research and Development Department, United Lincolnshire Hospitals NHS TrustLincoln County HospitalUK

Personalised recommendations