Dendritic Cells in Cancer: Emergenceof the Discipline

  • Michael R. Shurin
  • Michael T. Lotze


Immunologic research, following the discovery of dendritic cells radically changed our understanding of the induction, maintenance, and emergence of immune-mediated inflammatory disorders, including malignant diseases. The mechanisms central to the etiology and pathogenesis of many of these chronic inflammatory conditions involve dendritic cells. Identification of dendritic cells in tumors as well as clinical evaluation of dendritic cell vaccines led to the realization that very complex interactions between dendritic cells and other cellular and extracellular components of the tumor microenvironment dictated clinical outcome. Dendritic cells interestingly either induce antitumor immune response or promote a wound repair phenotype including reparative epithelial tumor proliferation, resumption of “barrier function”, promotion of the premetastatic niche, and metastases. The limited success of dendritic cell-based therapies suggests the need for a deeper understanding of immunobiology of these key cells of the immune system as they develop within the complex tumor microenvironment. Reanalyzing and reexamining the accumulated data and concepts in the field, as done in this chapter and the book overall, serve this important goal.


Dendritic Cell Antitumor Immunity Antitumor Immune Response Dendritic Cell Vaccine Dendritic Cell Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adler, H. S. and Steinbrink, K. 2007. Tolerogenic dendritic cells in health and disease: friend and foe! Eur J Dermatol 17:476–491PubMedGoogle Scholar
  2. Agrawal, A., Agrawal, S., Tay, J. and Gupta, S. 2008. Biology of dendritic cells in aging. J Clin Immunol 28:14–20PubMedCrossRefGoogle Scholar
  3. Ahmann, G. B., Nadler, P. I., Birnkrant, A. and Hodes, R. J. 1979. T cell recognition in the mixed lymphocyte response. I. Non-T, radiation-resistant splenic adherent cells are the predominant stimulators in the murine mixed lymphocyte reaction. J Immunol 123:903–909PubMedGoogle Scholar
  4. Ahmann, G. B., Nadler, P. I., Birnkrant, A. and Hodes, R. J. 1981. T cell recognition in the mixed lymphocyte response. II. Ia-positive splenic adherent cells are required for non-I region-induced stimulation. J Immunol 127:2308–2313PubMedGoogle Scholar
  5. Ambe, K., Mori, M. and Enjoji, M. 1989. S-100 protein-positive dendritic cells in colorectal adenocarcinomas. Distribution and relation to the clinical prognosis. Cancer 63:496–503PubMedCrossRefGoogle Scholar
  6. Auffray, C., Emre, Y. and Geissmann, F. 2008. Homeostasis of dendritic cell pool in lymphoid organs. Nat Immunol 9:584–586PubMedCrossRefGoogle Scholar
  7. Avila-Moreno, F., Lopez-Gonzalez, J. S., Galindo-Rodriguez, G., Prado-Garcia, H., Bajana, S. and Sanchez-Torres, C. 2006. Lung squamous cell carcinoma and adenocarcinoma cell lines use different mediators to induce comparable phenotypic and functional changes in human monocyte-derived dendritic cells. Cancer Immunol Immunother 55:598–611PubMedCrossRefGoogle Scholar
  8. Azizi, E., Bucana, C., Goldberg, L. and Kripke, M. L. 1987. Perturbation of epidermal Langerhans cells in basal cell carcinomas. Am J Dermatopathol 9:465–473PubMedCrossRefGoogle Scholar
  9. Balfour, B., O'Brien, J. A., Perera, M., Clarke, J., Sumerska, T. and Knight, S. C. 1982. The effect of veiled cells on lymphocyte function. Adv Exp Med Biol 149:447–454PubMedGoogle Scholar
  10. Basset, F., Soler, P., Wyllie, L., Abelanet, R., Le Charpentier, M., Kreis, B. and Breathnach, A. S. 1974. Langerhans cells in a bronchiolar-alveolar tumour of lung. Virchows Arch A Pathol Anat Histol 362:315–330PubMedCrossRefGoogle Scholar
  11. Becker, Y. 1992. Anticancer role of dendritic cells (DC) in human and experimental cancers – a review. Anticancer Res 12:511–520PubMedGoogle Scholar
  12. Becker, Y. 1993a. Dendritic cell activity against primary tumors: an overview. In Vivo 7:187–191PubMedGoogle Scholar
  13. Becker, Y. 1993b. Success and failure of dendritic cell (DC) anticancer activity may be modulated by nitric oxide synthetase (NOS) gene expression: a hypothesis. In Vivo 7:285–288PubMedGoogle Scholar
  14. Bellone, G., Carbone, A., Smirne, C., Scirelli, T., Buffolino, A., Novarino, A., Stacchini, A., Bertetto, O., Palestro, G., Sorio, C., Scarpa, A., Emanuelli, G. and Rodeck, U. 2006. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol 177:3448–3460PubMedGoogle Scholar
  15. Billingham, R. E. and Silvers, W. K. 1965. Some unsolved problems in the biology of the skin. In: Biology of the Skin and Hair Growth. Lyne and Short (Eds.), Angus and Robertson Publ., Sydney, pp. 1–24.Google Scholar
  16. Birbeck, M. S., Breathnach, A. S. and Everall, J. D. 1961. An electron microscopy study of basal melanocytes and high-level clear cells (Langerhans cells) in vitiligo. J Invest Dermatol 37:51–64Google Scholar
  17. Blanco, P., Palucka, A. K., Pascual, V. and Banchereau, J. 2008. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19:41–52PubMedCrossRefGoogle Scholar
  18. Capobianco, A., Rovere-Querini, P., Rugarli, C. and Manfredi, A. A. 2006. Melanoma cells interfere with the interaction of dendritic cells with NK/LAK cells. Int J Cancer 119:2861–2869PubMedCrossRefGoogle Scholar
  19. Caruso, C., Lio, D., Cavallone, L. and Franceschi, C. 2004. Aging, longevity, inflammation, and cancer. Ann N Y Acad Sci 1028:1–13PubMedCrossRefGoogle Scholar
  20. Chaux, P. 1995. [Dendritic cells and immune function in cancer]. Pathol Biol (Paris) 43:897–903Google Scholar
  21. Chaux, P., Hammann, A., Martin, F. and Martin, M. 1993. Surface phenotype and functions of tumor-infiltrating dendritic cells: CD8 expression by a cell subpopulation. Eur J Immunol 23:2517–2525PubMedCrossRefGoogle Scholar
  22. Chaux, P., Martin, M. S. and Martin, F. 1995. Defect of the CTLA4-Ig ligands on tumor-infiltrating dendritic cells. Adv Exp Med Biol 378:389–392PubMedCrossRefGoogle Scholar
  23. Chaux, P., Moutet, M., Faivre, J., Martin, F. and Martin, M. 1996. Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation. Lab Invest 74:975–983PubMedGoogle Scholar
  24. Cocchia, D., Michetti, F. and Donato, R. 1981. Immunochemical and immuno-cytochemical localization of S-100 antigen in normal human skin. Nature 294:85–87PubMedCrossRefGoogle Scholar
  25. Cochran, A. J., Pihl, E., Wen, D. R., Hoon, D. S. and Korn, E. L. 1987. Zoned immune suppression of lymph nodes draining malignant melanoma: histologic and immunohistologic studies. J Natl Cancer Inst 78:399–405PubMedGoogle Scholar
  26. Conejo-Garcia, J. R., Benencia, F., Courreges, M. C., Kang, E., Mohamed-Hadley, A., Buckanovich, R. J., Holtz, D. O., Jenkins, A., Na, H., Zhang, L., Wagner, D. S., Katsaros, D., Caroll, R. and Coukos, G. 2004. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 10:950–958PubMedCrossRefGoogle Scholar
  27. Curiel, T. J., Cheng, P., Mottram, P., Alvarez, X., Moons, L., Evdemon-Hogan, M., Wei, S., Zou, L., Kryczek, I., Hoyle, G., Lackner, A., Carmeliet, P. and Zou, W. 2004. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64:5535–5538PubMedCrossRefGoogle Scholar
  28. Curiel, T. J., Wei, S., Dong, H., Alvarez, X., Cheng, P., Mottram, P., Krzysiek, R., Knutson, K. L., Daniel, B., Zimmermann, M. C., David, O., Burow, M., Gordon, A., Dhurandhar, N., Myers, L., Berggren, R., Hemminki, A., Alvarez, R. D., Emilie, D., Curiel, D. T., Chen, L. and Zou, W. 2003. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567PubMedCrossRefGoogle Scholar
  29. David, R. and Buchner, A. 1980. Langerhans' cells in a pleomorphic adenoma of submandibular salivary gland. J Pathol 131:127–135PubMedCrossRefGoogle Scholar
  30. Eberth, C. I. 1870. Die endigung der Hautnerven. Arch. f. Mikr. Anat. 6:225–228CrossRefGoogle Scholar
  31. Elftman, M. D., Norbury, C. C., Bonneau, R. H. and Truckenmiller, M. E. 2007. Corticosterone impairs dendritic cell maturation and function. Immunology 122:279–290PubMedCrossRefGoogle Scholar
  32. Enk, A. H., Jonuleit, H., Saloga, J. and Knop, J. 1997. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73:309–316PubMedCrossRefGoogle Scholar
  33. Esche, C., Lokshin, A., Shurin, G. V., Gastman, B. R., Rabinowich, H., Watkins, S. C., Lotze, M. T. and Shurin, M. R. 1999. Tumor's other immune targets: dendritic cells. J Leukoc Biol 66:336–344PubMedGoogle Scholar
  34. Fernandez-Bussy, R., Cambazard, F., Mauduit, G., Schmitt, D. and Thivolet, J. 1983. T cell subsets and Langerhans cells in skin tumours. Eur J Cancer Clin Oncol 19:907–913PubMedCrossRefGoogle Scholar
  35. Fogg, D. K., Sibon, C., Miled, C., Jung, S., Aucouturier, P., Littman, D. R., Cumano, A. and Geissmann, F. 2006. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83–87PubMedCrossRefGoogle Scholar
  36. Frederick, M. J., Henderson, Y., Xu, X., Deavers, M. T., Sahin, A. A., Wu, H., Lewis, D. E., El-Naggar, A. K. and Clayman, G. L. 2000. In vivo expression of the novel CXC chemokine BRAK in normal and cancerous human tissue. Am J Pathol 156:1937–1950PubMedCrossRefGoogle Scholar
  37. Furukawa, T., Watanabe, S., Kodama, T., Sato, Y., Shimosato, Y. and Suemasu, K. 1985. T-zone histiocytes in adenocarcinoma of the lung in relation to postoperative prognosis. Cancer 56:2651–2656PubMedCrossRefGoogle Scholar
  38. Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., Kavanaugh, D. and Carbone, D. P. 1996a. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103PubMedCrossRefGoogle Scholar
  39. Gabrilovich, D. I., Ciernik, I. F. and Carbone, D. P. 1996b. Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol 170:101–110PubMedCrossRefGoogle Scholar
  40. Gatter, K. C., Morris, H. B., Roach, B., Mortimer, P., Fleming, K. A. and Mason, D. Y. 1984. Langerhans' cells and T cells in human skin tumours: an immunohistological study. Histopathology 8:229–244PubMedCrossRefGoogle Scholar
  41. Geissmann, F., Auffray, C., Palframan, R., Wirrig, C., Ciocca, A., Campisi, L., Narni-Mancinelli, E. and Lauvau, G. 2008. Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol 86:398–408PubMedCrossRefGoogle Scholar
  42. Gerner, M. Y., Casey, K. A. and Mescher, M. F. 2008. Defective MHC class II presentation by dendritic cells limits CD4 T cell help for antitumor CD8 T cell responses. J Immunol 181:155–164PubMedGoogle Scholar
  43. Ghiringhelli, F., Puig, P. E., Roux, S., Parcellier, A., Schmitt, E., Solary, E., Kroemer, G., Martin, F., Chauffert, B. and Zitvogel, L. 2005. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202:919–929PubMedCrossRefGoogle Scholar
  44. Goyarts, E., Matsui, M., Mammone, T., Bender, A. M., Wagner, J. A., Maes, D. and Granstein, R. D. 2008. Norepinephrine modulates human dendritic cell activation by altering cytokine release. Exp Dermatol 17:188–196PubMedCrossRefGoogle Scholar
  45. Gyure, L. A., Barfoot, R., Denham, S. and Hall, J. G. 1987. Immunity to a syngeneic sarcoma induced in rats by dendritic lymph cells exposed to the tumour either in vivo or in vitro. Br J Cancer 55:17–20PubMedCrossRefGoogle Scholar
  46. Hashimoto, K. 1971. Langerhans' cell granule. An endocytotic organelle. Arch Dermatol 104:148–160PubMedCrossRefGoogle Scholar
  47. Hashimoto, K. and Tarnowski, W. M. 1968. Some new aspects of the Langerhans cell. Arch Dermatol 97:450–464PubMedCrossRefGoogle Scholar
  48. Haustein, U. F. 1979. [The Langerhans cell--its macrophages-analogous function in the triggering of the allergic contact eczema (author's transl)]. Allerg Immunol (Leipz) 25:116–131Google Scholar
  49. Heusermann, U., Stutte, H. J. and Muller-Hermelink, H. K. 1974. Interdigitating cells in the white pulp of the human spleen. Cell Tissue Res 153:415–417PubMedCrossRefGoogle Scholar
  50. Hoefsmit, E. C. 1982. Macrophages, Langerhans cells, interdigitating and dendritic accessory cells: a summary. Adv Exp Med Biol 149:463–468PubMedGoogle Scholar
  51. Hoefsmit, E. C., Balfour, B. M., Kamperdijk, E. W. and Cvetanov, J. 1979. Cells containing Birbeck granules in the lymph and the lymph node. Adv Exp Med Biol 114:389–394PubMedGoogle Scholar
  52. Hou, D. Y., Muller, A. J., Sharma, M. D., DuHadaway, J., Banerjee, T., Johnson, M., Mellor, A. L., Prendergast, G. C. and Munn, D. H. 2007. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 67:792–801PubMedCrossRefGoogle Scholar
  53. Hromas, R., Broxmeyer, H. E., Kim, C., Nakshatri, H., Christopherson, K., 2nd, Azam, M. and Hou, Y. H. 1999. Cloning of BRAK, a novel divergent CXC chemokine preferentially expressed in normal versus malignant cells. Biochem Biophys Res Commun 255:703–706PubMedCrossRefGoogle Scholar
  54. Igisu, K., Watanabe, S., Shimosato, Y. and Kukita, A. 1983. Langerhans cells and their precursors with S100 protein in mycosis fungoides. Jpn J Clin Oncol 13:693–702PubMedGoogle Scholar
  55. Jimbow, K., Sato, S. and Kukita, A. 1969. Cells containing Langerhans granules in human lymph nodes of dermatopathic lymphadenopathy. J Invest Dermatol 53:295–299PubMedGoogle Scholar
  56. Katsenelson, N. S., Shurin, G. V., Bykovskaia, S. N., Shogan, J. and Shurin, M. R. 2001. Human small cell lung carcinoma and carcinoid tumor regulate dendritic cell maturation and function. Mod Pathol 14:40–45PubMedCrossRefGoogle Scholar
  57. Kawasaki, T., Choudhry, M. A., Schwacha, M. G., Fujimi, S., Lederer, J. A., Bland, K. I. and Chaudry, I. H. 2008. Trauma-hemorrhage inhibits splenic dendritic cell proinflammatory cytokine production via a mitogen-activated protein kinase process. Am J Physiol Cell Physiol 294:C754–764PubMedCrossRefGoogle Scholar
  58. Kelly, R. H., Balfour, B. M., Armstrong, J. A. and Griffiths, S. 1978. Functional anatomy of lymph nodes. II. Peripheral lymph-borne mononuclear cells. Anat Rec 190:5–21PubMedCrossRefGoogle Scholar
  59. Kidd, R. L., Krawczyk, W. S. and Wilgram, G. F. 1971. The Merkel cell in human epidermis: its differentiation from other dendritic cells. Arch Dermatol Forsch 241:374–384PubMedCrossRefGoogle Scholar
  60. Kiertscher, S. M., Luo, J., Dubinett, S. M. and Roth, M. D. 2000. Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J Immunol 164:1269–1276PubMedGoogle Scholar
  61. Klareskog, L., Tjernlund, U., Forsum, U. and Peterson, P. A. 1977. Epidermal Langerhans cells express Ia antigens. Nature 268:248–250PubMedCrossRefGoogle Scholar
  62. Kleyn, C. E., Schneider, L., Saraceno, R., Mantovani, C., Richards, H. L., Fortune, D. G., Cumberbatch, M., Dearman, R. J., Terenghi, G., Kimber, I. and Griffiths, C. E. 2008. The effects of acute social stress on epidermal Langerhans' cell frequency and expression of cutaneous neuropeptides. J Invest Dermatol 128:1273–1279PubMedCrossRefGoogle Scholar
  63. Knight, S. C., Balfour, B. M., O'Brien, J., Buttifant, L., Sumerska, T. and Clarke, J. 1982. Role of veiled cells in lymphocyte activation. Eur J Immunol 12:1057–1060PubMedCrossRefGoogle Scholar
  64. Knight, S. C., Hunt, R., Dore, C. and Medawar, P. B. 1985. Influence of dendritic cells on tumor growth. Proc Natl Acad Sci USA 82:4495–4497PubMedCrossRefGoogle Scholar
  65. Kondo, Y. 1969. Macrophages containing Langerhans cell granules in normal lymph nodes of the rabbit. Z Zellforsch Mikrosk Anat 98:506–511PubMedCrossRefGoogle Scholar
  66. Kurihara, K. and Hashimoto, N. 1985. The pathological significance of Langerhans cells in oral cancer. J Oral Pathol 14:289–298PubMedCrossRefGoogle Scholar
  67. Kuwahara, H. 1971. Fine structures of Langerhans cell with special references to their function. Jap J Dermatol Series B 80:195–210Google Scholar
  68. Lan, Y. Y., Wang, Z., Raimondi, G., Wu, W., Colvin, B. L., de Creus, A. and Thomson, A. W. 2006. “Alternatively activated” dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol 177:5868–5877PubMedGoogle Scholar
  69. Langerhans, P. 1868. Uber die Nerven der menschlichen Haut. . Virhouv Arch. [Pathol of Anat] 44:325–337CrossRefGoogle Scholar
  70. Lauriola, L., Michetti, F., Sentinelli, S. and Cocchia, D. 1984. Detection of S-100 labelled cells in nasopharyngeal carcinoma. J Clin Pathol 37:1235–1238PubMedCrossRefGoogle Scholar
  71. Lemaoult, J., Caumartin, J., Daouya, M., Favier, B., Rond, S. L., Gonzalez, A. and Carosella, E. D. 2007. Immune regulation by pretenders: cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood 109:2040–2048PubMedCrossRefGoogle Scholar
  72. Lisi, P. 1973. Investigation on Langerhans cells in pathological human epidermis. Acta Derm Venereol 53:425–428PubMedGoogle Scholar
  73. Loning, T., Caselitz, J., Seifert, G., Weber, K. and Osborn, M. 1982. Identification of Langerhans cells: simultaneous use of sera to intermediate filaments, T6 and HLA-DR antigens on oral mucosa, human epidermis and their tumours. Virchows Arch A Pathol Anat Histopathol 398:119–128PubMedCrossRefGoogle Scholar
  74. Lucas, A. D. and Halliday, G. M. 1999. Progressor but not regressor skin tumours inhibit Langerhans' cell migration from epidermis to local lymph nodes. Immunology 97:130–137PubMedCrossRefGoogle Scholar
  75. Macadam, R. F. 1978. An electron-microscopic study of basal cell carcinoma. J Pathol 126:149–156PubMedCrossRefGoogle Scholar
  76. Maggio, M., Guralnik, J. M., Longo, D. L. and Ferrucci, L. 2006. Interleukin-6 in aging and chronic disease: a magnificent pathway. J Gerontol A Biol Sci Med Sci 61:575–584PubMedCrossRefGoogle Scholar
  77. Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P. and Bronte, V. 2008. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179PubMedCrossRefGoogle Scholar
  78. McCarter, M. D., Baumgartner, J., Escobar, G. A., Richter, D., Lewis, K., Robinson, W., Wilson, C., Palmer, B. E. and Gonzalez, R. 2007. Immunosuppressive dendritic and regulatory T cells are upregulated in melanoma patients. Ann Surg Oncol 14:2854–2860PubMedCrossRefGoogle Scholar
  79. Mishima, Y. and Kawasaki, H. 1970. Dendritic cell dynamics in progressive depigmentation. Read before the VII. International Pigment Cell Conference, Seattle, September 2–6, 1969. J Invest Derm 54:93Google Scholar
  80. Mishima, Y., Kawasaki, H. and Pinkus, H. 1972. Dendritic cell dynamics in progressive depigmentations. Distinctive cytokinetics of -dendritic cells revealed by electron microscopy. Arch Dermatol Forsch 243:67–87PubMedCrossRefGoogle Scholar
  81. Muller, H. K., Halliday, G. M. and Knight, B. A. 1985. Carcinogen-induced depletion of cutaneous Langerhans cells. Br J Cancer 52:81–85PubMedCrossRefGoogle Scholar
  82. Nakajima, T., Kodama, T., Tsumuraya, M., Shimosato, Y. and Kameya, T. 1985. S-100 protein-positive Langerhans cells in various human lung cancers, especially in peripheral adenocarcinomas. Virchows Arch A Pathol Anat Histopathol 407:177–189PubMedCrossRefGoogle Scholar
  83. Nakajima, T., Watanabe, S., Sato, Y., Kameya, T., Hirota, T. and Shimosato, Y. 1982. An immunoperoxidase study of S-100 protein distribution in normal and neoplastic tissues. Am J Surg Pathol 6:715–727PubMedCrossRefGoogle Scholar
  84. Nomori, H., Watanabe, S., Nakajima, T., Shimosato, Y. and Kameya, T. 1986. Histiocytes in nasopharyngeal carcinoma in relation to prognosis. Cancer 57:100–105PubMedCrossRefGoogle Scholar
  85. O'Donnell, R. K., Mick, R., Feldman, M., Hino, S., Wang, Y., Brose, M. S. and Muschel, R. J. 2007. Distribution of dendritic cell subtypes in primary oral squamous cell carcinoma is inconsistent with a functional response. Cancer Lett 255:145–152PubMedCrossRefGoogle Scholar
  86. Olah, I., Dunay, C., Rohlich, P. and Toro, I. 1968. A special type of cells in the medulla of the rat thymus. Acta Biol Acad Sci Hung 19:97–113PubMedGoogle Scholar
  87. Peguet-Navarro, J., Sportouch, M., Popa, I., Berthier, O., Schmitt, D. and Portoukalian, J. 2003. Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J Immunol 170:3488–3494PubMedGoogle Scholar
  88. Pehamberger, H., Stingl, L. A., Pogantsch, S., Steiner, G., Wolff, K. and Stingl, G. 1983. Epidermal cell-induced generation of cytotoxic T-lymphocyte responses against alloantigens or TNP-modified syngeneic cells: requirement for Ia-positive Langerhans cells. J Invest Dermatol 81:208–211PubMedCrossRefGoogle Scholar
  89. Pinzon-Charry, A., Maxwell, T., McGuckin, M. A., Schmidt, C., Furnival, C. and Lopez, J. A. 2006. Spontaneous apoptosis of blood dendritic cells in patients with breast cancer. Breast Cancer Res 8:R5PubMedCrossRefGoogle Scholar
  90. Pirtskhalaishvili, G., Shurin, G. V., Esche, C., Trump, D. L. and Shurin, M. R. 2001. TNF-alpha protects dendritic cells from prostate cancer-induced apoptosis. Prostate Cancer Prostatic Dis 4:221–227PubMedCrossRefGoogle Scholar
  91. Pirtskhalaishvili, G., Shurin, G. V., Gambotto, A., Esche, C., Wahl, M., Yurkovetsky, Z. R., Robbins, P. D. and Shurin, M. R. 2000. Transduction of dendritic cells with Bcl-xL increases their resistance to prostate cancer-induced apoptosis and antitumor effect in mice. J Immunol 165:1956–1964PubMedGoogle Scholar
  92. Poppema, S., Brocker, E. B., de Leij, L., Terbrack, D., Visscher, T., Ter Haar, A., Macher, E., The, T. H. and Sorg, C. 1983. In situ analysis of the mononuclear cell infiltrate in primary malignant melanoma of the skin. Clin Exp Immunol 51:77–82PubMedGoogle Scholar
  93. Porfiri, B., Nigro, M. and Garcovich, A. 1979. [Presence of clusters of Langerhans cells and lymphoid cells in the peritumoral infiltrate of a case of basal cell naevus syndrome. Ultrastructural study (author's transl)]. Ann Dermatol Venereol 106:237–240PubMedGoogle Scholar
  94. Prunieras, M. 1969. Interactions between keratinocytes and dendritic cells. J Invest Dermatol 52:1–17Google Scholar
  95. Ranvier, L. 1875. Traite technique d'Histologie. Savy Edit. Paris.Google Scholar
  96. Richtsmeier, W. J., Bowers, W. E., Ellsworth, C. A., Sorge, K. and Berkowitz, M. 1984. Dendritic cell identification in head and neck lymphoid tissue. Newly recognized cells control T-lymphocyte functions. Arch Otolaryngol 110:701–706PubMedCrossRefGoogle Scholar
  97. Rossner, S., Voigtlander, C., Wiethe, C., Hanig, J., Seifarth, C. and Lutz, M. B. 2005. Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol 35:3533–3544PubMedCrossRefGoogle Scholar
  98. Rowden, G., Lewis, M. G. and Sullivan, A. K. 1977. Ia antigen expression on human epidermal Langerhans cells. Nature 268:247–248PubMedCrossRefGoogle Scholar
  99. Rowden, G., Phillips, T. M., Lewis, M. G. and Wilkinson, R. D. 1979. Target role of Langerhans cells in mycosis fungoides: transmission and immuno-electron microscopic studies. J Cutan Pathol 6:364–382PubMedCrossRefGoogle Scholar
  100. Sagebiel, R. W. 1972. In vivo and in vitro uptake of ferritin by Langerhans cells of the epidermis. J Invest Dermatol 58:47–54PubMedCrossRefGoogle Scholar
  101. Saint-Mezard, P., Chavagnac, C., Bosset, S., Ionescu, M., Peyron, E., Kaiserlian, D., Nicolas, J. F. and Berard, F. 2003. Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo. J Immunol 171:4073–4080PubMedGoogle Scholar
  102. Schenk, P. 1980. [Langerhans cells in invasive laryngeal carcinoma (author's transl)]. Laryngol Rhinol Otol (Stuttg) 59:232–237CrossRefGoogle Scholar
  103. Sebelin, K., Schulzki, A., Kloetzel, P. M., Dorken, B., Pezzutto, A. and Subklewe, M. 2006. Impairment of circulating myeloid dendritic cells in immunosuppressed renal/pancreas transplant recipients. Transplantation 82:779–787PubMedCrossRefGoogle Scholar
  104. Shurin, M. R. and Chatta, G. 2008. Immunobiology of dendritic cells in cancer. In: Mechanisms of Therapeutic Reversal of Immune Suppression in Cancer. D. I. Gabrilovich and A. Hurtwiz (Eds.), pp. 101–130.Google Scholar
  105. Shurin, M. R., Esche, C., Lokshin, A. and Lotze, M. T. 1999. Apoptosis of dendritic cells. In: Dendritic Cells. M .T. Lotze and A. W. Thomson (Eds.), Academic Press, San Diego, CA, pp. 673–692.Google Scholar
  106. Shurin, G. V., Ferris, R. L., Tourkova, I. L., Perez, L., Lokshin, A., Balkir, L., Collins, B., Chatta, G. S. and Shurin, M. R. 2005a. Loss of new chemokine CXCL14 in tumor tissue is associated with low infiltration by dendritic cells (DC), while restoration of human CXCL14 expression in tumor cells causes attraction of DC both in vitro and in vivo. J Immunol 174:5490–5498PubMedGoogle Scholar
  107. Shurin, G. V., Shurin, M. R., Bykovskaia, S., Shogan, J., Lotze, M. T. and Barksdale, E. M., Jr. 2001. Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–369PubMedGoogle Scholar
  108. Shurin, G. V., Tourkova, I. L., Chatta, G. S., Schmidt, G., Wei, S., Djeu, J. Y. and Shurin, M. R. 2005b. Small rho GTPases regulate antigen presentation in dendritic cells. J Immunol 174:3394–3400PubMedGoogle Scholar
  109. Shurin, M. R. and Gabrilovich, D. I. 2001. Regulation of dendritic cell system by tumor. Cancer Res, Ther Control 11:65–78Google Scholar
  110. Shurin, M. R., Shurin, G. V. and Chatta, G. S. 2007. Aging and the dendritic cell system: implications for cancer. Crit Rev Oncol Hematol 64:90–105PubMedCrossRefGoogle Scholar
  111. Shurin, M. R., Shurin, G. V., Lokshin, A., Yurkovetsky, Z. R., Gutkin, D. W., Chatta, G., Zhong, H., Han, B. and Ferris, R. L. 2006. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356PubMedCrossRefGoogle Scholar
  112. Shurin, G. V., Yurkovetsky, Z. R. and Shurin, M. R. 2003. Tumor-induced dendritic cell dysfunction. In: Mechanisms of Tumor Escape from the Immune Response. A. C. Ochoa (Ed.), Taylor & Francis Publ., New York, pp. 112–138.Google Scholar
  113. Shurin, M. R., Yurkovetsky, Z. R., Tourkova, I. L., Balkir, L. and Shurin, G. V. 2002. Inhibition of CD40 expression and CD40-mediated dendritic cell function by tumor-derived IL-10. Int J Cancer 101:61–68PubMedCrossRefGoogle Scholar
  114. Silberberg, I. 1971. Ultrastructural studies of Langerhans cells in contact sensitive and irritant reactions to mercuric chloride (abstr.). Clin Res 19:715Google Scholar
  115. Silberberg, I. 1972. Ultrastructural features of Langerhans cells at sites of negative and positive contact allergic patch test reactions (abstr.). Clin Res 20:419.Google Scholar
  116. Silberberg, I. 1973. Apposition of mononuclear cells to langerhans cells in contact allergic reactions. An ultrastructural study. Acta Derm Venereol 53:1–12PubMedGoogle Scholar
  117. Silberberg, I., Baer, R. L. and Rosenthal, S. A. 1974. Circulating Langerhans cells in a dermal vessel. Acta Derm Venereol 54:81–85PubMedGoogle Scholar
  118. Silberberg, I., Baer, R. L. and Rosenthal, S. A. 1976. The role of Langerhans cells in allergic contact hypersensitivity. A review of findings in man and guinea pigs. J Invest Dermatol 66:210–217PubMedCrossRefGoogle Scholar
  119. Spry, C. J., Pflug, A. J., Janossy, G. and Humphrey, J. H. 1980. Large mononuclear (veiled) cells like ‘Ia-like’ membrane antigens in human afferent lympn. Clin Exp Immunol 39:750–755PubMedGoogle Scholar
  120. Steinman, R. M. and Cohn, Z. A. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162PubMedCrossRefGoogle Scholar
  121. Steinman, R. M. and Nussenzweig, M. C. 1980. Dendritic cells: features and functions. Immunol Rev 53:127–147PubMedCrossRefGoogle Scholar
  122. Steinman, R. M. and Witmer, M. D. 1978. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci USA 75:5132–5136PubMedCrossRefGoogle Scholar
  123. Stene, M. A., Holthoj-Asnong, C. and Cochran, A. J. 1992. Effect of epidermal Langerhans cells from melanoma patients on lymphoproliferative responses. Melanoma Res 2:57–62PubMedCrossRefGoogle Scholar
  124. Sterry, W. and Steigleder, G. K. 1979. Acid nonspecific esterase in human Langerhans cells. J Cutan Pathol 6:476–478PubMedCrossRefGoogle Scholar
  125. Stingl, G., Katz, S. I., Clement, L., Green, I. and Shevach, E. M. 1978a. Immunologic functions of Ia-bearing epidermal Langerhans cells. J Immunol 121:2005–2013PubMedGoogle Scholar
  126. Stingl, G., Katz, S. I., Shevach, E. M., Rosenthal, A. S. and Green, I. 1978b. Analogous functions of macrophages and Langerhans cells in the initiation in the immune response. J Invest Dermatol 71:59–64PubMedCrossRefGoogle Scholar
  127. Stingl, G., Wolff-Schreiner, E. C., Pichler, W. J., Gschnait, F., Knapp, W. and Wolff, K. 1977. Epidermal Langerhans cells bear Fc and C3 receptors. Nature 268:245–246PubMedCrossRefGoogle Scholar
  128. Stoger, H., Wilders-Truschnig, M., Samonigg, H., Schmid, M., Bauernhofer, T., Tiran, A., Tas, M. and Drexhage, H. A. 1993. The presence of immunosuppressive ‘p15E-like’ factors in the serum and urine of patients suffering from malign and benign breast tumours. Clin Exp Immunol 93:437–441PubMedCrossRefGoogle Scholar
  129. Szekeres, L. and Daroczy, J. 1981. Electron microscopic investigation on the local cellular reaction to primary malignant melanoma. Dermatologica 163:137–144Google Scholar
  130. Taieb, J., Chaput, N., Menard, C., Apetoh, L., Ullrich, E., Bonmort, M., Pequignot, M., Casares, N., Terme, M., Flament, C., Opolon, P., Lecluse, Y., Metivier, D., Tomasello, E., Vivier, E., Ghiringhelli, F., Martin, F., Klatzmann, D., Poynard, T., Tursz, T., Raposo, G., Yagita, H., Ryffel, B., Kroemer, G. and Zitvogel, L. 2006. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 12:214–219PubMedCrossRefGoogle Scholar
  131. Tarnowski, W. M. and Hashimoto, K. 1967. Langerhans' cell granules in histiocytosis X. The epidermal Langerhans' cell as a macrophage. Arch Dermatol 96:298–304PubMedCrossRefGoogle Scholar
  132. Tas, M. P., Simons, P. J., Balm, F. J. and Drexhage, H. A. 1993. Depressed monocyte polarization and clustering of dendritic cells in patients with head and neck cancer: in vitro restoration of this immunosuppression by thymic hormones. Cancer Immunol Immunother 36:108–114PubMedCrossRefGoogle Scholar
  133. Tay, S. K., Jenkins, D., Maddox, P., Campion, M. and Singer, A. 1987. Subpopulations of Langerhans' cells in cervical neoplasia. Br J Obstet Gynaecol 94:10–15PubMedCrossRefGoogle Scholar
  134. Thomas, J. A., Iliescu, V., Crawford, D. H., Ellouz, R., Cammoun, M. and de-The, G. 1984. Expression of HLA-DR antigens in nasopharyngeal carcinoma: an immunohistological analysis of the tumour cells and infiltrating lymphocytes. Int J Cancer 33:813–819PubMedCrossRefGoogle Scholar
  135. Tourkova, I. L., Shurin, G. V., Chatta, G. S., Perez, L., Finke, J., Whiteside, T. L., Ferrone, S. and Shurin, M. R. 2005. Restoration by IL-15 of MHC class I antigen-processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. J Immunol 175:3045–3052PubMedGoogle Scholar
  136. Tourkova, I. L., Shurin, G. V., Wei, S. and Shurin, M. R. 2007. Small rho GTPases mediate tumor-induced inhibition of endocytic activity of dendritic cells. J Immunol 178:7787–7793PubMedGoogle Scholar
  137. Tsujitani, S., Furukawa, T., Tamada, R., Okamura, T., Yasumoto, K. and Sugimachi, K. 1987. Langerhans cells and prognosis in patients with gastric carcinoma. Cancer 59:501–505PubMedCrossRefGoogle Scholar
  138. Vakkila, J., Thomson, A. W., Vettenranta, K., Sariola, H. and Saarinen-Pihkala, U. M. 2004. Dendritic cell subsets in childhood and in children with cancer: relation to age and disease prognosis. Clin Exp Immunol 135:455–461PubMedCrossRefGoogle Scholar
  139. Van Haelst, U. J. 1969. Light and electron microscopic study of the normal and pathological thymus of the rat. 3. A mesenchymal histiocytic type of cell. Z Zellforsch Mikrosk Anat 99:198–209PubMedCrossRefGoogle Scholar
  140. Van Voorhis, W. C., Valinsky, J., Hoffman, E., Luban, J., Hair, L. S. and Steinman, R. M. 1983a. Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication. J Exp Med 158:174–191PubMedCrossRefGoogle Scholar
  141. Van Voorhis, W. C., Witmer, M. D. and Steinman, R. M. 1983b. The phenotype of dendritic cells and macrophages. Fed Proc 42:3114–3118PubMedGoogle Scholar
  142. Veldman, J. E., Molenaar, I. and Keuning, F. J. 1978. Electron microscopy of cellular immunity reactions in B-cell deprived rabbits. Thymus derived antigen reactive cells, their micro-environment and progeny in the lymph node. Virchows Arch B Cell Pathol 28:217–228PubMedGoogle Scholar
  143. Vernon, M. L., Fountain, L., Krebs, H. M., Horta-Barbosa, L., Fuccillo, D. A. and Sever, J. L. 1973. Birbeck granules (Langerhans' cell granules) in human lymph nodes. Am J Clin Pathol 60:771–779PubMedGoogle Scholar
  144. Wertel, F., Polak, G., Rolinski, J., Barczynski, B. and Kotarski, J. 2006. Myeloid and lymphoid dendritic cells in the peritoneal fluid of women with ovarian cancer. Adv Med Sci 51:174–177PubMedGoogle Scholar
  145. Wilborn, W. H., Dismukes, D. E. and Montes, L. F. 1978. Ultrastructural identification of Langerhans cells in seborrheic keratoses. J Cutan Pathol 5:368–372PubMedCrossRefGoogle Scholar
  146. Wolff, K. and Schreiner, E. 1970. Uptake, intracellular transport and degradation of exogenous protein by Langerhans cells. An electron microscopic-cytochemical study using peroxidase as tracer substance. J Invest Dermatol 54:37–47Google Scholar
  147. Zelickson, A. S. 1965. The Langerhans Cell. J Invest Dermatol 44:201–212PubMedGoogle Scholar
  148. Zelickson, A. S. and Mottaz, J. H. 1968. Epidermal dendritic cells. A quantitative study. Arch Dermatol 98:652–659PubMedCrossRefGoogle Scholar
  149. Zou, W., Machelon, V., Coulomb-L'Hermin, A., Borvak, J., Nome, F., Isaeva, T., Wei, S., Krzysiek, R., Durand-Gasselin, I., Gordon, A., Pustilnik, T., Curiel, D. T., Galanaud, P., Capron, F., Emilie, D. and Curiel, T. J. 2001. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7:1339–1346PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Clinical ImmunopathologyUniversity of Pittsburgh Medical Center and University of Pittsburgh Cancer InstitutePittsburghUSA

Personalised recommendations