Skip to main content

Role of IDO in Dendritic Cell Differentiation and Function in Cancer

  • Chapter
  • First Online:

Abstract

Expression of tryptophan-catabolizing enzyme indoleamine-pyrrole 2,3-dioxygenase (IDO) has been associated with the regulatory phenotype of tumor-associated dendritic cells, along with other tolerogenic mechanisms, including production of immunomodulatory cytokines and expression of immune-inhibitory receptors. IDO activation in dendritic cells leads to tryptophan depletion and accumulation of its toxic downstream metabolites which in concert directly suppress proliferation of T cells and induce T-cell apoptosis. Furthermore, IDO-positive dendritic cells promote the induction of regulatory T cells, which further impair protective immunity against tumors. In the context of cancer, IDO induction in dendritic cells can be triggered by receptors expressed by regulatory T cells, such as CTLA4 and GITR, and by soluble tumor-associated factors, such as prostaglandin E2, in close alliance with TNF signaling. Immunosuppressive effects of enzymatically active IDO can be overcome by specific inhibitors such as 1-methyl-tryptophan which can be used for therapeutic purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Astigiano, S., Morandi, B., Costa, R., Mastracci, L., D'Agostino, A., Ratto, G. B., Melioli, G. and Frumento, G. 2005. Eosinophil granulocytes account for indoleamine 2,3-dioxygenase-mediated immune escape in human non-small cell lung cancer. Neoplasia 7:390–396.

    Article  PubMed  CAS  Google Scholar 

  • Baban, B., Hansen, A. M., Chandler, P. R., Manlapat, A., Bingaman, A., Kahler, D. J., Munn, D. H. and Mellor, A. L. 2005. A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int Immunol 17:909–919.

    Article  PubMed  CAS  Google Scholar 

  • Ball, H. J., Sanchez-Perez, A., Weiser, S., Austin, C. J., Astelbauer, F., Miu, J., McQuillan, J. A., Stocker, R., Jermiin, L. S. and Hunt, N. H. 2007. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 396:203–213.

    Article  PubMed  CAS  Google Scholar 

  • Belladonna, M. L., Grohmann, U., Guidetti, P., Volpi, C., Bianchi, R., Fioretti, M. C., Schwarcz, R., Fallarino, F. and Puccetti, P. 2006. Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 177:130–137.

    PubMed  CAS  Google Scholar 

  • Braun, D., Longman, R. S. and Albert, M. L. 2005. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106:2375–2381.

    Article  PubMed  CAS  Google Scholar 

  • de Faudeur, G., de Trez, C., Muraille, E. and Leo, O. 2008. Normal development and function of dendritic cells in mice lacking IDO-1 expression. Immunol Lett 118:21–29.

    Article  PubMed  Google Scholar 

  • Fallarino, F., Grohmann, U., Vacca, C., Bianchi, R., Orabona, C., Spreca, A., Fioretti, M. C. and Puccetti, P. 2002a. T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077.

    Article  PubMed  CAS  Google Scholar 

  • Fallarino, F., Grohmann, U., You, S., McGrath, B. C., Cavener, D. R., Vacca, C., Orabona, C., Bianchi, R., Belladonna, M. L., Volpi, C., Santamaria, P., Fioretti, M. C. and Puccetti, P. 2006. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761.

    PubMed  CAS  Google Scholar 

  • Fallarino, F., Vacca, C., Orabona, C., Belladonna, M. L., Bianchi, R., Marshall, B., Keskin, D. B., Mellor, A. L., Fioretti, M. C., Grohmann, U. and Puccetti, P. 2002b. Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int Immunol 14:65–68.

    Article  PubMed  CAS  Google Scholar 

  • Frumento, G., Rotondo, R., Tonetti, M., Damonte, G., Benatti, U. and Ferrara, G. B. 2002. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196:459–468.

    Article  PubMed  CAS  Google Scholar 

  • Grohmann, U., Fallarino, F., Bianchi, R., Belladonna, M. L., Vacca, C., Orabona, C., Uyttenhove, C., Fioretti, M. C. and Puccetti, P. 2001. IL-6 inhibits the tolerogenic function of CD8 alpha+ dendritic cells expressing indoleamine 2,3-dioxygenase. J Immunol 167:708–714.

    PubMed  CAS  Google Scholar 

  • Grohmann, U., Orabona, C., Fallarino, F., Vacca, C., Calcinaro, F., Falorni, A., Candeloro, P., Belladonna, M. L., Bianchi, R., Fioretti, M. C. and Puccetti, P. 2002. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097–1101.

    Article  PubMed  CAS  Google Scholar 

  • Grohmann, U., Volpi, C., Fallarino, F., Bozza, S., Bianchi, R., Vacca, C., Orabona, C., Belladonna, M. L., Ayroldi, E., Nocentini, G., Boon, L., Bistoni, F., Fioretti, M. C., Romani, L., Riccardi, C. and Puccetti, P. 2007. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13:579–586.

    Article  PubMed  CAS  Google Scholar 

  • Hara, T., Ogasawara, N., Akimoto, H., Takikawa, O., Hiramatsu, R., Kawabe, T., Isobe, K. and Nagase, F. 2008. High-affinity uptake of kynurenine and nitric oxide-mediated inhibition of indoleamine 2,3-dioxygenase in bone marrow-derived myeloid dendritic cells. Immunol Lett 116:95–102.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, T., Beck, L., Rossetto, C., Gong, X., Takikawa, O., Takabayashi, K., Broide, D. H., Carson, D. A. and Raz, E. 2004. Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J Clin Invest 114:270–279.

    PubMed  CAS  Google Scholar 

  • Hayashi, T., Mo, J. H., Gong, X., Rossetto, C., Jang, A., Beck, L., Elliott, G. I., Kufareva, I., Abagyan, R., Broide, D. H., Lee, J. and Raz, E. 2007. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci U S A 104:18619–18624.

    Article  PubMed  CAS  Google Scholar 

  • Hou, D. Y., Muller, A. J., Sharma, M. D., DuHadaway, J., Banerjee, T., Johnson, M., Mellor, A. L., Prendergast, G. C. and Munn, D. H. 2007. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 67:792–801.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, S. L., Chung, N. P., Chan, J. K. and Lin, C. L. 2005. Indoleamine 2,3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines. Cell Res 15:167–175.

    Article  PubMed  CAS  Google Scholar 

  • Hwu, P., Du, M. X., Lapointe, R., Do, M., Taylor, M. W. and Young, H. A. 2000. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164:3596–3599.

    PubMed  CAS  Google Scholar 

  • Kaper, T., Looger, L. L., Takanaga, H., Platten, M., Steinman, L. and Frommer, W. B. 2007. Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol 5:e257.

    Article  PubMed  Google Scholar 

  • Kumar, S., Malachowski, W. P., Duhadaway, J. B., Lalonde, J. M., Carroll, P. J., Jaller, D., Metz, R., Prendergast, G. C. and Muller, A. J. 2008. Indoleamine 2,3-dioxygenase is the anticancer target for a novel series of potent naphthoquinone-based inhibitors. J Med Chem 51:1706–1718.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. R., Dalton, R. R., Messina, J. L., Sharma, M. D., Smith, D. M., Burgess, R. E., Mazzella, F., Antonia, S. J., Mellor, A. L. and Munn, D. H. 2003. Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab Invest 83:1457–1466.

    Article  PubMed  CAS  Google Scholar 

  • Lob, S., Ebner, S., Wagner, S., Weinreich, J., Schafer, R. and Konigsrainer, A. 2007. Are indoleamine-2,3-dioxygenase producing human dendritic cells a tool for suppression of allogeneic t-cell responses? Transplantation 83:468–473.

    Article  PubMed  Google Scholar 

  • Lob, S., Konigsrainer, A., Schafer, R., Rammensee, H. G., Opelz, G. and Terness, P. 2008a. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 111:2152–2154.

    Article  PubMed  CAS  Google Scholar 

  • Lob, S., Konigsrainer, A., Zieker, D., Brucher, B. L., Rammensee, H. G., Opelz, G. and Terness, P. 2008b. IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother 58:153–157.

    Article  PubMed  Google Scholar 

  • Lopez, A. S., Alegre, E., LeMaoult, J., Carosella, E. and Gonzalez, A. 2006. Regulatory role of tryptophan degradation pathway in HLA-G expression by human monocyte-derived dendritic cells. Mol Immunol 43:2151–2160.

    Article  PubMed  CAS  Google Scholar 

  • Manlapat, A. K., Kahler, D. J., Chandler, P. R., Munn, D. H. and Mellor, A. L. 2007. Cell-autonomous control of interferon type I expression by indoleamine 2,3-dioxygenase in regulatory CD19(+) dendritic cells. Eur J Immunol 37:1064–1071.

    Article  PubMed  CAS  Google Scholar 

  • Mellor, A. L., Baban, B., Chandler, P., Marshall, B., Jhaver, K., Hansen, A., Koni, P. A., Iwashima, M. and Munn, D. H. 2003. Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 171:1652–1655.

    PubMed  CAS  Google Scholar 

  • Mellor, A. L. and Munn, D. H. 2004. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immuno l 4:762–774.

    Article  Google Scholar 

  • Moffett, J. R. and Namboodiri, M. A. 2003. Tryptophan and the immune response. Immunol Cell Biol 81:247–265.

    Article  PubMed  CAS  Google Scholar 

  • Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. and Prendergast, G. C. 2005. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 11:312–319.

    Article  PubMed  CAS  Google Scholar 

  • Munn, D. H. and Mellor, A. L. 2007. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117:1147–1154.

    Article  PubMed  CAS  Google Scholar 

  • Munn, D. H., Shafizadeh, E., Attwood, J. T., Bondarev, I., Pashine, A. and Mellor, A. L. 1999. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189:1363–1372.

    Article  PubMed  CAS  Google Scholar 

  • Munn, D. H., Sharma, M. D., Baban, B., Harding, H. P., Zhang, Y., Ron, D. and Mellor, A. L. 2005. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642.

    Article  PubMed  CAS  Google Scholar 

  • Munn, D. H., Sharma, M. D., Hou, D., Baban, B., Lee, J. R., Antonia, S. J., Messina, J. L., Chandler, P., Koni, P. A. and Mellor, A. L. 2004. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290.

    PubMed  CAS  Google Scholar 

  • Munn, D. H., Sharma, M. D., Lee, J. R., Jhaver, K. G., Johnson, T. S., Keskin, D. B., Marshall, B., Chandler, P., Antonia, S. J., Burgess, R., Slingluff, C. L., Jr. and Mellor, A. L. 2002. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870.

    Article  PubMed  CAS  Google Scholar 

  • Munn, D. H., Zhou, M., Attwood, J. T., Bondarev, I., Conway, S. J., Marshall, B., Brown, C. and Mellor, A. L. 1998. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T., Shima, T., Saeki, A., Hidaka, T., Nakashima, A., Takikawa, O. and Saito, S. 2007. Expression of indoleamine 2,3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer Sci 98:874–881.

    Article  PubMed  CAS  Google Scholar 

  • Ou, X., Cai, S., Liu, P., Zeng, J., He, Y., Wu, X. and Du, J. 2008. Enhancement of dendritic cell-tumor fusion vaccine potency by indoleamine-pyrrole 2,3-dioxygenase inhibitor, 1-MT. J Cancer Res Clin Oncol 134:525–533.

    Article  PubMed  CAS  Google Scholar 

  • Popov, A., Abdullah, Z., Wickenhauser, C., Saric, T., Driesen, J., Hanisch, F. G., Domann, E., Raven, E. L., Dehus, O., Hermann, C., Eggle, D., Debey, S., Chakraborty, T., Kronke, M., Utermohlen, O. and Schultze, J. L. 2006. Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. J Clin Invest 116:3160–3170.

    Article  PubMed  CAS  Google Scholar 

  • Popov, A. and Schultze, J. L. 2008. IDO-expressing regulatory dendritic cells in cancer and chronic infection. J Mol Med 86:145–160.

    Article  PubMed  CAS  Google Scholar 

  • Romani, L., Fallarino, F., De Luca, A., Montagnoli, C., D'Angelo, C., Zelante, T., Vacca, C., Bistoni, F., Fioretti, M. C., Grohmann, U., Segal, B. H. and Puccetti, P. 2008. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451:211–215.

    Article  PubMed  CAS  Google Scholar 

  • Seymour, R. L., Ganapathy, V., Mellor, A. L. and Munn, D. H. 2006. A high-affinity, tryptophan-selective amino acid transport system in human macrophages. J Leukoc Biol 80:1320–1327.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, M. D., Baban, B., Chandler, P., Hou, D. Y., Singh, N., Yagita, H., Azuma, M., Blazar, B. R., Mellor, A. L. and Munn, D. H. 2007. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117:2570–2582.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M. W. and Feng, G. S. 1991. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. Faseb J 5:2516–2522.

    PubMed  CAS  Google Scholar 

  • Terness, P., Bauer, T. M., Rose, L., Dufter, C., Watzlik, A., Simon, H. and Opelz, G. 2002. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457.

    Article  PubMed  CAS  Google Scholar 

  • Uyttenhove, C., Pilotte, L., Theate, I., Stroobant, V., Colau, D., Parmentier, N., Boon, T. and Van den Eynde, B. J. 2003. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274.

    Article  PubMed  CAS  Google Scholar 

  • Verrey, F. 2003. System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch 445:529–533.

    PubMed  CAS  Google Scholar 

  • von Bergwelt-Baildon, M. S., Popov, A., Saric, T., Chemnitz, J., Classen, S., Stoffel, M. S., Fiore, F., Roth, U., Beyer, M., Debey, S., Wickenhauser, C., Hanisch, F. G. and Schultze, J. L. 2006. CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood 108:228–237.

    Article  Google Scholar 

  • Wobser, M., Voigt, H., Houben, R., Eggert, A. O., Freiwald, M., Kaemmerer, U., Kaempgen, E., Schrama, D. and Becker, J. C. 2007. Dendritic cell based antitumor vaccination: impact of functional indoleamine 2,3-dioxygenase expression. Cancer Immunol Immunother 56:1017–1024.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Popov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Popov, A., Schultze, J.L. (2009). Role of IDO in Dendritic Cell Differentiation and Function in Cancer. In: Salter, R., Shurin, M. (eds) Dendritic Cells in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88611-4_15

Download citation

Publish with us

Policies and ethics