Advertisement

Cancer Therapy and Dendritic Cell Immunomodulation

  • Galina V. Shurin
  • Neil Amina
  • Michael R. Shurin
Chapter

Abstract

Conventional cancer treatment still uses three important modalities of the last four decades: surgery, radiotherapy, and cytotoxic chemotherapy. For treatment of metastatic disease, cytotoxic chemotherapy is the mainstay of treatment, although it is broadly targeted and results in toxicity to normal tissues with limited expectation of curing metastatic tumors. Immunotherapies have also been explored over several decades. Among immunotherapies, approaches based on dendritic cell vaccines are particularly promising, since dendritic cells, as professional antigen-presenting cells, can utilize apoptosis/necrosis-induced therapy of tumors to elicit improved antitumor immunity through the acquisition of tumor antigens from dying tumor cells. The combination of conventional therapy with dendritic cell vaccine is one of the approaches to induce protective antitumor immunity and therapeutic efficacy against cancer. However, conventional therapy is impacting endogenous and exogenous dendritic cell activities and is commonly associated with myelosuppression. New strategies are necessary to develop feasible and effective combinatorial therapeutic approaches for cancer treatment. We have recently shown that short-term non-toxic low-dose chemotherapy, so-called chemomodulation, prior to intralesional injection of dendritic cell vaccine targets multiple immunological and stromal elements in the tumor environment, opening a new opportunity for cancer treatment.

Keywords

Vascular Endothelial Growth Factor Dendritic Cell Vascular Endothelial Growth Factor Level Antitumor Immunity Dendritic Cell Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allendorf, J. D., Bessler, M., Whelan, R. L., Trokel, M., Laird, D. A., Terry, M. B. and Treat, M. R. 1997. Postoperative immune function varies inversely with the degree of surgical trauma in a murine model. Surg Endosc 11:427–430.PubMedCrossRefGoogle Scholar
  2. Belizon, A., Balik, E., Feingold, D. L., Bessler, M., Arnell, T. D., Forde, K. A., Horst, P. K., Jain, S., Cekic, V., Kirman, I. and Whelan, R. L. 2006. Major abdominal surgery increases plasma levels of vascular endothelial growth factor: open more so than minimally invasive methods. Ann Surg 244:792–798.PubMedCrossRefGoogle Scholar
  3. Belizon, A., Balik, E., Horst, P., Feingold, D., Arnell, T., Azarani, T., Cekic, V., Skitt, R., Kumara, S. and Whelan, R. L. 2008. Persistent elevation of plasma vascular endothelial growth factor levels during the first month after minimally invasive colorectal resection. Surg Endosc 22:287–297.PubMedCrossRefGoogle Scholar
  4. Belka, C., Ottinger, H., Kreuzfelder, E., Weinmann, M., Lindemann, M., Lepple-Wienhues, A., Budach, W., Grosse-Wilde, H. and Bamberg, M. 1999. Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol 50:199–204.PubMedCrossRefGoogle Scholar
  5. Bellik, L., Gerlini, G., Parenti, A., Ledda, F., Pimpinelli, N., Neri, B. and Pantalone, D. 2006. Role of conventional treatments on circulating and monocyte-derived dendritic cells in colorectal cancer. Clin Immunol 121:74–80.PubMedCrossRefGoogle Scholar
  6. Ben-Eliyahu, S. 2003. The promotion of tumor metastasis by surgery and stress: immunological basis and implications for psychoneuroimmunology. Brain Behav Immun 17 Suppl 1:S27–36.CrossRefGoogle Scholar
  7. Bentzen, S. M. 2006. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6:702–713.PubMedCrossRefGoogle Scholar
  8. Benvenuti, F., Hugues, S., Walmsley, M., Ruf, S., Fetler, L., Popoff, M., Tybulewicz, V. L. and Amigorena, S. 2004. Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science 305:1150–1153.PubMedCrossRefGoogle Scholar
  9. Berrebi, D., Bruscoli, S., Cohen, N., Foussat, A., Migliorati, G., Bouchet-Delbos, L., Maillot, M. C., Portier, A., Couderc, J., Galanaud, P., Peuchmaur, M., Riccardi, C. and Emilie, D. 2003. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101:729–738.PubMedCrossRefGoogle Scholar
  10. Blumenthal, R. D., Alisauskas, R., Lew, W., Sharkey, R. M. and Goldenberg, D. M. 1998. Myelosuppressive changes from single or repeated doses of radioantibody therapy: effect of bone marrow transplantation, cytokines, and hematopoietic suppression. Exp Hematol 26:859–868.PubMedGoogle Scholar
  11. Brancato, S. and Miner, T. J. 2008. Surgical management of gastric cancer: review and consideration for total care of the gastric cancer patient. Curr Treat Options Gastroenterol 11:109–118.PubMedCrossRefGoogle Scholar
  12. Brivio, F., Gilardi, R., Bucocev, R., Ferrante, R., Rescaldani, R., Vigore, L., Fumagalli, L., Nespoli, A. and Lissoni, P. 2000a. Surgery-induced decline in circulating dendritic cells in operable cancer patients: a possible explanation of postoperative immunosuppression. Hepatogastroenterology 47:1337–1339.PubMedGoogle Scholar
  13. Brivio, F., Lissoni, P., Gilardi, R., Ferrante, R., Vigore, L., Curzi, L., Uggeri, F., Nespoli, A. and Fumagalli, L. 2000b. Abrogation of surgery-induced decline in circulating dendritic cells by subcutaneous preoperative administration of IL-2 in operable cancer patients. J Biol Regul Homeost Agents 14:200–203.PubMedGoogle Scholar
  14. Brivio, F., Lissoni, P., Rovelli, F., Nespoli, A., Uggeri, F., Fumagalli, L. and Gardani, G. 2002. Effects of IL-2 preoperative immunotherapy on surgery-induced changes in angiogenic regulation and its prevention of VEGF increase and IL-12 decline. Hepatogastroenterology 49:385–387.PubMedGoogle Scholar
  15. Cavanagh, W. A., Tjoa, B. A. and Ragde, H. 2007. Chemotherapy followed by syngeneic dendritic cell injection in the mouse: findings and implications for human treatment. Urology 70:36–41.PubMedCrossRefGoogle Scholar
  16. Cerea, K., Romano, F., Bravo, A. F., Motta, V., Uggeri, F., Brivio, F., Fumagalli, L. A. and Uggeri, F. 2001. Phase IB study on prevention of surgery-induced immunodeficiency with preoperative administration of low-dose subcutaneous interleukin-2 in gastric cancer patients. J Surg Oncol 78:32–37.PubMedCrossRefGoogle Scholar
  17. Choi, G. S., Lee, M. H., Kim, S. K., Kim, C. S., Lee, H. S., Im, M. W., Kil, H. Y., Seong, D. H., Lee, J. R., Kim, W. C., Lee, M. G. and Song, S. U. 2005. Combined treatment of an intratumoral injection of dendritic cells and systemic chemotherapy (Paclitaxel) for murine fibrosarcoma. Yonsei Med J 46:835–842.PubMedCrossRefGoogle Scholar
  18. Cole, S. 1986. Long-term effects of local ionizing radiation treatment on Langerhans cells in mouse footpad epidermis. J Invest Dermatol 87:608–612.PubMedCrossRefGoogle Scholar
  19. De Ruysscher, D., Waer, M., Vandeputte, M., Aerts, R., Vantongelen, K. and van der Schueren, E. 1992. Changes of lymphocyte subsets after local irradiation for early stage breast cancer and seminoma testis: long-term increase of activated (HLA-DR+) T cells and decrease of "naive" (CD4–CD45R) T lymphocytes. Eur J Cancer 28A:1729–1734.PubMedCrossRefGoogle Scholar
  20. Do, Y., Hegde, V. L., Nagarkatti, P. S. and Nagarkatti, M. 2004. Bryostatin-1 enhances the maturation and antigen-presenting ability of murine and human dendritic cells. Cancer Res 64:6756–6765.PubMedCrossRefGoogle Scholar
  21. Friedman, E. J. 2002. Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr Pharm Des 8:1765–1780.PubMedCrossRefGoogle Scholar
  22. Galetto, A., Buttiglieri, S., Forno, S., Moro, F., Mussa, A. and Matera, L. 2003. Drug- and cell-mediated antitumor cytotoxicities modulate cross-presentation of tumor antigens by myeloid dendritic cells. Anticancer Drugs 14:833–843.PubMedCrossRefGoogle Scholar
  23. Goldfarb, Y. and Ben-Eliyahu, S. 2006. Surgery as a risk factor for breast cancer recurrence and metastasis: mediating mechanisms and clinical prophylactic approaches. Breast Dis 26:99–114.PubMedGoogle Scholar
  24. Gong, J., Nikrui, N., Chen, D., Koido, S., Wu, Z., Tanaka, Y., Cannistra, S., Avigan, D. and Kufe, D. 2000. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J Immunol 165:1705–1711.PubMedGoogle Scholar
  25. Hamdi, H., Godot, V., Maillot, M. C., Prejean, M. V., Cohen, N., Krzysiek, R., Lemoine, F. M., Zou, W. and Emilie, D. 2007. Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper. Blood 110:211–219.PubMedCrossRefGoogle Scholar
  26. Heath, W. R., Belz, G. T., Behrens, G. M., Smith, C. M., Forehan, S. P., Parish, I. A., Davey, G. M., Wilson, N. S., Carbone, F. R. and Villadangos, J. A. 2004. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199:9–26.PubMedCrossRefGoogle Scholar
  27. Huang, J., Wang, Y., Guo, J., Lu, H., Lin, X., Ma, L., Teitz-Tennenbaum, S., Chang, A. E. and Li, Q. 2007. Radiation-induced apoptosis along with local and systemic cytokine elaboration is associated with DC plus radiotherapy-mediated renal cell tumor regression. Clin Immunol 123:298–310.PubMedCrossRefGoogle Scholar
  28. Jiga, L. P., Bauer, T. M., Chuang, J. J., Opelz, G. and Terness, P. 2004. Generation of tolerogenic dendritic cells by treatment with mitomycin C: inhibition of allogeneic T-cell response is mediated by downregulation of ICAM-1, CD80, and CD86. Transplantation 77:1761–1764.PubMedCrossRefGoogle Scholar
  29. Kawasaki, T., Ogata, M., Kawasaki, C., Okamoto, K. and Sata, T. 2007. Effects of epidural anaesthesia on surgical stress-induced immunosuppression during upper abdominal surgery. Br J Anaesth 98:196–203.PubMedCrossRefGoogle Scholar
  30. Kawase, Y., Naito, S., Ito, M., Sekine, I. and Fujii, H. 1990. The effect of ionizing radiation on epidermal Langerhans cells – a quantitative analysis of autopsy cases with radiation therapy. J Radiat Res (Tokyo) 31:246–255.CrossRefGoogle Scholar
  31. Kirman, I., Belizon, A., Balik, E., Feingold, D., Arnell, T., Horst, P., Kumara, S., Cekic, V., Jain, S., Nasar, A. and Whelan, R. L. 2007. Perioperative sargramostim (recombinant human GM-CSF) induces an increase in the level of soluble VEGFR1 in colon cancer patients undergoing minimally invasive surgery. Eur J Surg Oncol 33:1169–1176.PubMedCrossRefGoogle Scholar
  32. Kobayashi, M., Azuma, E., Ido, M., Hirayama, M., Jiang, Q., Iwamoto, S., Kumamoto, T., Yamamoto, H., Sakurai, M. and Komada, Y. 2001. A pivotal role of Rho GTPase in the regulation of morphology and function of dendritic cells. J Immunol 167:3585–3591.PubMedGoogle Scholar
  33. Kunzmann, V., Kretzschmar, E., Herrmann, T. and Wilhelm, M. 2004. Polyinosinic-polycytidylic acid-mediated stimulation of human gammadelta T cells via CD11c dendritic cell-derived type I interferons. Immunology 112:369–377.PubMedCrossRefGoogle Scholar
  34. Kyoizumi, S., McCune, J. M. and Namikawa, R. 1994. Direct evaluation of radiation damage in human hematopoietic progenitor cells in vivo. Radiat Res 137:76–83.PubMedCrossRefGoogle Scholar
  35. Laane, E., Bjorklund, E., Mazur, J., Lonnerholm, G., Soderhall, S. and Porwit, A. 2007. Dendritic cell regeneration in the bone marrow of children treated for acute lymphoblastic leukaemia. Scand J Immunol 66:572–583.PubMedCrossRefGoogle Scholar
  36. Lake, R. A. and Robinson, B. W. 2005. Immunotherapy and chemotherapy – a practical partnership. Nat Rev Cancer 5:397–405.PubMedCrossRefGoogle Scholar
  37. Laquente, B., Vinals, F. and Germa, J. R. 2007. Metronomic chemotherapy: an antiangiogenic scheduling. Clin Transl Oncol 9:93–98.PubMedCrossRefGoogle Scholar
  38. Le Poole, I. C., Bommiasamy, H. and Kast, W. M. 2003. Recent progress in tumour vaccine development. Expert Opin Investig Drugs 12:971–981.PubMedCrossRefGoogle Scholar
  39. Liao, Y. P., Schaue, D. and McBride, W. H. 2007. Modification of the tumor microenvironment to enhance immunity. Front Biosci 12:3576–3600.PubMedCrossRefGoogle Scholar
  40. Liao, Y. P., Wang, C. C., Butterfield, L. H., Economou, J. S., Ribas, A., Meng, W. S., Iwamoto, K. S. and McBride, W. H. 2004. Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. J Immunol 173:2462–2469.PubMedGoogle Scholar
  41. Lissoni, P., Malugani, F., Bonfanti, A., Bucovec, R., Secondino, S., Brivio, F., Ferrari-Bravo, A., Ferrante, R., Vigore, L., Rovelli, F., Mandala, M., Viviani, S., Fumagalli, L. and Gardani, G. S. 2001. Abnormally enhanced blood concentrations of vascular endothelial growth factor (VEGF) in metastatic cancer patients and their relation to circulating dendritic cells, IL-12 and endothelin-1. J Biol Regul Homeost Agents 15:140–144.PubMedGoogle Scholar
  42. Liu, W. C., Wang, S. C., Tsai, M. L., Chen, M. C., Wang, Y. C., Hong, J. H., McBride, W. H. and Chiang, C. S. 2006. Protection against radiation-induced bone marrow and intestinal injuries by Cordyceps sinensis, a Chinese herbal medicine. Radiat Res 166:900–907.PubMedCrossRefGoogle Scholar
  43. Lutgendorf, S. K., Cole, S., Costanzo, E., Bradley, S., Coffin, J., Jabbari, S., Rainwater, K., Ritchie, J. M., Yang, M. and Sood, A. K. 2003. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res 9:4514–4521.PubMedGoogle Scholar
  44. Markowicz, S., Walewski, J., Zajda, K., Wiechno, P. J., Skurzak, H. M., Giermek, J., Gajkowska, A., Krzakowski, M. and Pienkowski, T. 2002. Recovery of dendritic cell counts and function in peripheral blood of cancer patients after chemotherapy. Cytokines Cell Mol Ther 7:15–24.PubMedCrossRefGoogle Scholar
  45. Mihich, E. 1967. [Antitumor chemotherapy. Considerations on the potential role of immunity]. Pathol Biol 15:209–214.PubMedGoogle Scholar
  46. Mihich, E. 2000a. New leads in cancer therapeutics: a keynote address. Medicina (B Aires) 60 Suppl 2:4–8.Google Scholar
  47. Mihich, E. 2000b. On the immunomodulating effects of anti-cancer drugs and their therapeutic exploitation. Jpn J Clin Oncol 30:469–471.PubMedCrossRefGoogle Scholar
  48. Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., Burg, G. and Schadendorf, D. 1998. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332.PubMedCrossRefGoogle Scholar
  49. Ng, C. S., Lee, T. W., Wan, S., Wan, I. Y., Sihoe, A. D., Arifi, A. A. and Yim, A. P. 2005. Thoracotomy is associated with significantly more profound suppression in lymphocytes and natural killer cells than video-assisted thoracic surgery following major lung resections for cancer. J Invest Surg 18:81–88.PubMedCrossRefGoogle Scholar
  50. Nowak, A. K., Lake, R. A., Marzo, A. L., Scott, B., Heath, W. R., Collins, E. J., Frelinger, J. A. and Robinson, B. W. 2003. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 170:4905–4913.PubMedGoogle Scholar
  51. Nowak, A. K., Lake, R. A. and Robinson, B. W. 2006. Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev 58:975–990.Google Scholar
  52. O'Neill, D. W. and Bhardwaj, N. 2007. Exploiting dendritic cells for active immunotherapy of cancer and chronic infections. Mol Biotechnol 36:131–141.PubMedCrossRefGoogle Scholar
  53. Ogata, M., Okamoto, K., Kohriyama, K., Kawasaki, T., Itoh, H. and Shigematsu, A. 2000. Role of interleukin-10 on hyporesponsiveness of endotoxin during surgery. Crit Care Med 28:3166–3170.PubMedCrossRefGoogle Scholar
  54. Ohtsukasa, S., Okabe, S., Yamashita, H., Iwai, T. and Sugihara, K. 2003. Increased expression of CEA and MHC class I in colorectal cancer cell lines exposed to chemotherapy drugs. J Cancer Res Clin Oncol 129:719–726.PubMedCrossRefGoogle Scholar
  55. Okazaki, T., Ebihara, S., Asada, M., Kanda, A., Sasaki, H. and Yamaya, M. 2006. Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int Immunol 18:1–9.PubMedCrossRefGoogle Scholar
  56. Okazaki, T., Ebihara, S., Takahashi, H., Asada, M., Kanda, A. and Sasaki, H. 2005. Macrophage colony-stimulating factor induces vascular endothelial growth factor production in skeletal muscle and promotes tumor angiogenesis. J Immunol 174:7531–7538.PubMedGoogle Scholar
  57. Page, G. G. 2005. Surgery-induced immunosuppression and postoperative pain management. AACN Clin Issues 16:302–309; quiz 416–308.PubMedCrossRefGoogle Scholar
  58. Perrotta, C., Bizzozero, L., Falcone, S., Rovere-Querini, P., Prinetti, A., Schuchman, E. H., Sonnino, S., Manfredi, A. A. and Clementi, E. 2007. Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. Cancer Res 67:7559–7564.PubMedCrossRefGoogle Scholar
  59. Rea, D., van Kooten, C., van Meijgaarden, K. E., Ottenhoff, T. H., Melief, C. J. and Offringa, R. 2000. Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood 95:3162–3167.PubMedGoogle Scholar
  60. Rozkova, D., Horvath, R., Bartunkova, J. and Spisek, R. 2006. Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin Immunol 120:260–271.PubMedCrossRefGoogle Scholar
  61. Shakhar, G., Abudarham, N., Melamed, R., Schwartz, Y., Rosenne, E. and Ben-Eliyahu, S. 2007. Amelioration of operation-induced suppression of marginating pulmonary NK activity using poly I-C: a potential approach to reduce postoperative metastasis. Ann Surg Oncol 14:841–852.PubMedCrossRefGoogle Scholar
  62. Shakhar, G. and Ben-Eliyahu, S. 2003. Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients? Ann Surg Oncol 10:972–992.Google Scholar
  63. Shakhar, G. and Blumenfeld, B. 2003. Glucocorticoid involvement in suppression of NK activity following surgery in rats. J Neuroimmunol 138:83–91.PubMedCrossRefGoogle Scholar
  64. Shin, J. Y., Lee, S. K., Kang, C. D., Chung, J. S., Lee, E. Y., Seo, S. Y., Lee, S. Y., Baek, S. Y., Kim, B. S., Kim, J. B. and Yoon, S. 2003. Antitumor effect of intratumoral administration of dendritic cell combination with vincristine chemotherapy in a murine fibrosarcoma model. Histol Histopathol 18:435–447.PubMedGoogle Scholar
  65. Shu, S., Zheng, R., Lee, W. T. and Cohen, P. A. 2007. Immunogenicity of dendritic-tumor fusion hybrids and their utility in cancer immunotherapy. Crit Rev Immunol 27:463–483.PubMedGoogle Scholar
  66. Shurin, G. V., Tourkova, I. L., Chatta, G. S., Schmidt, G., Wei, S., Djeu, J. Y. and Shurin, M. R. 2005. Small rho GTPases regulate antigen presentation in dendritic cells. J Immunol 174:3394–3400.PubMedGoogle Scholar
  67. Shurin, G. V., Tourkova, I. L. and Shurin, M. R. 2008. Low-dose chemotherapeutic agents regulate small Rho GTPase activity in dendritic cells. J Immunother 31:491–499.PubMedCrossRefGoogle Scholar
  68. Shurin, M. R., Shurin, G. V., Lokshin, A., Yurkovetsky, Z. R., Gutkin, D. W., Chatta, G., Zhong, H., Han, B. and Ferris, R. L. 2006. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356.PubMedGoogle Scholar
  69. Steer, J. H., Vuong, Q. and Joyce, D. A. 1997. Suppression of human monocyte tumour necrosis factor-alpha release by glucocorticoid therapy: relationship to systemic monocytopaenia and cortisol suppression. Br J Clin Pharmacol 43:383–389.PubMedCrossRefGoogle Scholar
  70. Stone, H. B., Coleman, C. N., Anscher, M. S. and McBride, W. H. 2003. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 4:529–536.PubMedCrossRefGoogle Scholar
  71. Takahashi, K., Satoi, S., Yanagimoto, H., Terakawa, N., Toyokawa, H., Yamamoto, T., Matsui, Y., Takai, S., Kwon, A. H. and Kamiyama, Y. 2007. Circulating dendritic cells and development of septic complications after pancreatectomy for pancreatic cancer. Arch Surg 142:1151–1157; discussion 1157.PubMedCrossRefGoogle Scholar
  72. Teitz-Tennenbaum, S., Li, Q., Okuyama, R., Davis, M. A., Sun, R., Whitfield, J., Knibbs, R. N., Stoolman, L. M. and Chang, A. E. 2008. Mechanisms involved in radiation enhancement of intratumoral dendritic cell therapy. J Immunother 31:345–358.PubMedCrossRefGoogle Scholar
  73. Teitz-Tennenbaum, S., Li, Q., Rynkiewicz, S., Ito, F., Davis, M. A., McGinn, C. J. and Chang, A. E. 2003. Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Cancer Res 63:8466–8475.PubMedGoogle Scholar
  74. Thaker, P. H., Han, L. Y., Kamat, A. A., Arevalo, J. M., Takahashi, R., Lu, C., Jennings, N. B., Armaiz-Pena, G., Bankson, J. A., Ravoori, M., Merritt, W. M., Lin, Y. G., Mangala, L. S., Kim, T. J., Coleman, R. L., Landen, C. N., Li, Y., Felix, E., Sanguino, A. M., Newman, R. A., Lloyd, M., Gershenson, D. M., Kundra, V., Lopez-Berestein, G., Lutgendorf, S. K., Cole, S. W. and Sood, A. K. 2006. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939–944.PubMedCrossRefGoogle Scholar
  75. Tong, Y., Song, W. and Crystal, R. G. 2001. Combined intratumoral injection of bone marrow-derived dendritic cells and systemic chemotherapy to treat `existing murine tumors. Cancer Res 61:7530–7535.PubMedGoogle Scholar
  76. Tourkova, I. L., Shurin, G. V., Wei, S. and Shurin, M. R. 2007. Small rho GTPases mediate tumor-induced inhibition of endocytic activity of dendritic cells. J Immunol 178:7787–7793.PubMedGoogle Scholar
  77. Tubiana, M., Carde, P. and Frindel, E. 1993. Ways of minimising hematopoietic damage induced by radiation and cytostatic drugs – the possible role of inhibitors. Radiother Oncol 29:1–17.PubMedCrossRefGoogle Scholar
  78. Utoh, J., Yamamoto, T., Utsunomiya, T., Kambara, T., Goto, H. and Miyauchi, Y. 1988. Effect of surgery on neutrophil functions, superoxide and leukotriene production. Br J Surg 75:682–685.PubMedCrossRefGoogle Scholar
  79. Verhoeven, G. T., Van Haarst, J. M., De Wit, H. J., Simons, P. J., Hoogsteden, H. C. and Drexhage, H. A. 2000. Glucocorticoids hamper the ex vivo maturation of lung dendritic cells from their low autofluorescent precursors in the human bronchoalveolar lavage: decreases in allostimulatory capacity and expression of CD80 and CD86. Clin Exp Immunol 122:232–240.PubMedCrossRefGoogle Scholar
  80. Werling, D., Hope, J. C., Howard, C. J. and Jungi, T. W. 2004. Differential production of cytokines, reactive oxygen and nitrogen by bovine macrophages and dendritic cells stimulated with Toll-like receptor agonists. Immunology 111:41–52.PubMedCrossRefGoogle Scholar
  81. Whelan, R. L., Franklin, M., Holubar, S. D., Donahue, J., Fowler, R., Munger, C., Doorman, J., Balli, J. E., Glass, J., Gonzalez, J. J., Bessler, M., Xie, H. and Treat, M. 2003. Postoperative cell mediated immune response is better preserved after laparoscopic vs open colorectal resection in humans. Surg Endosc 17:972–978.PubMedCrossRefGoogle Scholar
  82. Yu, B., Kusmartsev, S., Cheng, F., Paolini, M., Nefedova, Y., Sotomayor, E. and Gabrilovich, D. 2003. Effective combination of chemotherapy and dendritic cell administration for the treatment of advanced-stage experimental breast cancer. Clin Cancer Res 9:285–294.PubMedGoogle Scholar
  83. Zhao, J., Kim, J. E., Reed, E. and Li, Q. Q. 2005. Molecular mechanism of antitumor activity of taxanes in lung cancer (Review). Int J Oncol 27:247–256.PubMedGoogle Scholar
  84. Zhong, H., Han, B., Tourkova, I. L., Lokshin, A., Rosenbloom, A., Shurin, M. R. and Shurin, G. V. 2007a. Low-dose paclitaxel prior to intratumoral dendritic cell vaccine modulates intratumoral cytokine network and lung cancer growth. Clin Cancer Res 13:5455–5462.PubMedCrossRefGoogle Scholar
  85. Zhong, H., Shurin, M. R. and Han, B. 2007b. Optimizing dendritic cell-based immunotherapy for cancer. Expert Rev Vaccines 6:333–345.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Galina V. Shurin
    • 1
  • Neil Amina
  • Michael R. Shurin
  1. 1.Departments of Pathology and ImmunologyUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations