Skip to main content

Cancer Therapy and Dendritic Cell Immunomodulation

  • Chapter
  • First Online:
Book cover Dendritic Cells in Cancer

Abstract

Conventional cancer treatment still uses three important modalities of the last four decades: surgery, radiotherapy, and cytotoxic chemotherapy. For treatment of metastatic disease, cytotoxic chemotherapy is the mainstay of treatment, although it is broadly targeted and results in toxicity to normal tissues with limited expectation of curing metastatic tumors. Immunotherapies have also been explored over several decades. Among immunotherapies, approaches based on dendritic cell vaccines are particularly promising, since dendritic cells, as professional antigen-presenting cells, can utilize apoptosis/necrosis-induced therapy of tumors to elicit improved antitumor immunity through the acquisition of tumor antigens from dying tumor cells. The combination of conventional therapy with dendritic cell vaccine is one of the approaches to induce protective antitumor immunity and therapeutic efficacy against cancer. However, conventional therapy is impacting endogenous and exogenous dendritic cell activities and is commonly associated with myelosuppression. New strategies are necessary to develop feasible and effective combinatorial therapeutic approaches for cancer treatment. We have recently shown that short-term non-toxic low-dose chemotherapy, so-called chemomodulation, prior to intralesional injection of dendritic cell vaccine targets multiple immunological and stromal elements in the tumor environment, opening a new opportunity for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allendorf, J. D., Bessler, M., Whelan, R. L., Trokel, M., Laird, D. A., Terry, M. B. and Treat, M. R. 1997. Postoperative immune function varies inversely with the degree of surgical trauma in a murine model. Surg Endosc 11:427–430.

    Article  PubMed  CAS  Google Scholar 

  • Belizon, A., Balik, E., Feingold, D. L., Bessler, M., Arnell, T. D., Forde, K. A., Horst, P. K., Jain, S., Cekic, V., Kirman, I. and Whelan, R. L. 2006. Major abdominal surgery increases plasma levels of vascular endothelial growth factor: open more so than minimally invasive methods. Ann Surg 244:792–798.

    Article  PubMed  Google Scholar 

  • Belizon, A., Balik, E., Horst, P., Feingold, D., Arnell, T., Azarani, T., Cekic, V., Skitt, R., Kumara, S. and Whelan, R. L. 2008. Persistent elevation of plasma vascular endothelial growth factor levels during the first month after minimally invasive colorectal resection. Surg Endosc 22:287–297.

    Article  PubMed  CAS  Google Scholar 

  • Belka, C., Ottinger, H., Kreuzfelder, E., Weinmann, M., Lindemann, M., Lepple-Wienhues, A., Budach, W., Grosse-Wilde, H. and Bamberg, M. 1999. Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol 50:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Bellik, L., Gerlini, G., Parenti, A., Ledda, F., Pimpinelli, N., Neri, B. and Pantalone, D. 2006. Role of conventional treatments on circulating and monocyte-derived dendritic cells in colorectal cancer. Clin Immunol 121:74–80.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Eliyahu, S. 2003. The promotion of tumor metastasis by surgery and stress: immunological basis and implications for psychoneuroimmunology. Brain Behav Immun 17 Suppl 1:S27–36.

    Article  Google Scholar 

  • Bentzen, S. M. 2006. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6:702–713.

    Article  PubMed  CAS  Google Scholar 

  • Benvenuti, F., Hugues, S., Walmsley, M., Ruf, S., Fetler, L., Popoff, M., Tybulewicz, V. L. and Amigorena, S. 2004. Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science 305:1150–1153.

    Article  PubMed  CAS  Google Scholar 

  • Berrebi, D., Bruscoli, S., Cohen, N., Foussat, A., Migliorati, G., Bouchet-Delbos, L., Maillot, M. C., Portier, A., Couderc, J., Galanaud, P., Peuchmaur, M., Riccardi, C. and Emilie, D. 2003. Synthesis of glucocorticoid-induced leucine zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive mechanism shared by glucocorticoids and IL-10. Blood 101:729–738.

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal, R. D., Alisauskas, R., Lew, W., Sharkey, R. M. and Goldenberg, D. M. 1998. Myelosuppressive changes from single or repeated doses of radioantibody therapy: effect of bone marrow transplantation, cytokines, and hematopoietic suppression. Exp Hematol 26:859–868.

    PubMed  CAS  Google Scholar 

  • Brancato, S. and Miner, T. J. 2008. Surgical management of gastric cancer: review and consideration for total care of the gastric cancer patient. Curr Treat Options Gastroenterol 11:109–118.

    Article  PubMed  Google Scholar 

  • Brivio, F., Gilardi, R., Bucocev, R., Ferrante, R., Rescaldani, R., Vigore, L., Fumagalli, L., Nespoli, A. and Lissoni, P. 2000a. Surgery-induced decline in circulating dendritic cells in operable cancer patients: a possible explanation of postoperative immunosuppression. Hepatogastroenterology 47:1337–1339.

    PubMed  CAS  Google Scholar 

  • Brivio, F., Lissoni, P., Gilardi, R., Ferrante, R., Vigore, L., Curzi, L., Uggeri, F., Nespoli, A. and Fumagalli, L. 2000b. Abrogation of surgery-induced decline in circulating dendritic cells by subcutaneous preoperative administration of IL-2 in operable cancer patients. J Biol Regul Homeost Agents 14:200–203.

    PubMed  CAS  Google Scholar 

  • Brivio, F., Lissoni, P., Rovelli, F., Nespoli, A., Uggeri, F., Fumagalli, L. and Gardani, G. 2002. Effects of IL-2 preoperative immunotherapy on surgery-induced changes in angiogenic regulation and its prevention of VEGF increase and IL-12 decline. Hepatogastroenterology 49:385–387.

    PubMed  CAS  Google Scholar 

  • Cavanagh, W. A., Tjoa, B. A. and Ragde, H. 2007. Chemotherapy followed by syngeneic dendritic cell injection in the mouse: findings and implications for human treatment. Urology 70:36–41.

    Article  PubMed  Google Scholar 

  • Cerea, K., Romano, F., Bravo, A. F., Motta, V., Uggeri, F., Brivio, F., Fumagalli, L. A. and Uggeri, F. 2001. Phase IB study on prevention of surgery-induced immunodeficiency with preoperative administration of low-dose subcutaneous interleukin-2 in gastric cancer patients. J Surg Oncol 78:32–37.

    Article  PubMed  CAS  Google Scholar 

  • Choi, G. S., Lee, M. H., Kim, S. K., Kim, C. S., Lee, H. S., Im, M. W., Kil, H. Y., Seong, D. H., Lee, J. R., Kim, W. C., Lee, M. G. and Song, S. U. 2005. Combined treatment of an intratumoral injection of dendritic cells and systemic chemotherapy (Paclitaxel) for murine fibrosarcoma. Yonsei Med J 46:835–842.

    Article  PubMed  CAS  Google Scholar 

  • Cole, S. 1986. Long-term effects of local ionizing radiation treatment on Langerhans cells in mouse footpad epidermis. J Invest Dermatol 87:608–612.

    Article  PubMed  CAS  Google Scholar 

  • De Ruysscher, D., Waer, M., Vandeputte, M., Aerts, R., Vantongelen, K. and van der Schueren, E. 1992. Changes of lymphocyte subsets after local irradiation for early stage breast cancer and seminoma testis: long-term increase of activated (HLA-DR+) T cells and decrease of "naive" (CD4–CD45R) T lymphocytes. Eur J Cancer 28A:1729–1734.

    Article  PubMed  Google Scholar 

  • Do, Y., Hegde, V. L., Nagarkatti, P. S. and Nagarkatti, M. 2004. Bryostatin-1 enhances the maturation and antigen-presenting ability of murine and human dendritic cells. Cancer Res 64:6756–6765.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, E. J. 2002. Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr Pharm Des 8:1765–1780.

    Article  PubMed  CAS  Google Scholar 

  • Galetto, A., Buttiglieri, S., Forno, S., Moro, F., Mussa, A. and Matera, L. 2003. Drug- and cell-mediated antitumor cytotoxicities modulate cross-presentation of tumor antigens by myeloid dendritic cells. Anticancer Drugs 14:833–843.

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb, Y. and Ben-Eliyahu, S. 2006. Surgery as a risk factor for breast cancer recurrence and metastasis: mediating mechanisms and clinical prophylactic approaches. Breast Dis 26:99–114.

    PubMed  Google Scholar 

  • Gong, J., Nikrui, N., Chen, D., Koido, S., Wu, Z., Tanaka, Y., Cannistra, S., Avigan, D. and Kufe, D. 2000. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J Immunol 165:1705–1711.

    PubMed  CAS  Google Scholar 

  • Hamdi, H., Godot, V., Maillot, M. C., Prejean, M. V., Cohen, N., Krzysiek, R., Lemoine, F. M., Zou, W. and Emilie, D. 2007. Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper. Blood 110:211–219.

    Article  PubMed  CAS  Google Scholar 

  • Heath, W. R., Belz, G. T., Behrens, G. M., Smith, C. M., Forehan, S. P., Parish, I. A., Davey, G. M., Wilson, N. S., Carbone, F. R. and Villadangos, J. A. 2004. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199:9–26.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Wang, Y., Guo, J., Lu, H., Lin, X., Ma, L., Teitz-Tennenbaum, S., Chang, A. E. and Li, Q. 2007. Radiation-induced apoptosis along with local and systemic cytokine elaboration is associated with DC plus radiotherapy-mediated renal cell tumor regression. Clin Immunol 123:298–310.

    Article  PubMed  CAS  Google Scholar 

  • Jiga, L. P., Bauer, T. M., Chuang, J. J., Opelz, G. and Terness, P. 2004. Generation of tolerogenic dendritic cells by treatment with mitomycin C: inhibition of allogeneic T-cell response is mediated by downregulation of ICAM-1, CD80, and CD86. Transplantation 77:1761–1764.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, T., Ogata, M., Kawasaki, C., Okamoto, K. and Sata, T. 2007. Effects of epidural anaesthesia on surgical stress-induced immunosuppression during upper abdominal surgery. Br J Anaesth 98:196–203.

    Article  PubMed  CAS  Google Scholar 

  • Kawase, Y., Naito, S., Ito, M., Sekine, I. and Fujii, H. 1990. The effect of ionizing radiation on epidermal Langerhans cells – a quantitative analysis of autopsy cases with radiation therapy. J Radiat Res (Tokyo) 31:246–255.

    Article  CAS  Google Scholar 

  • Kirman, I., Belizon, A., Balik, E., Feingold, D., Arnell, T., Horst, P., Kumara, S., Cekic, V., Jain, S., Nasar, A. and Whelan, R. L. 2007. Perioperative sargramostim (recombinant human GM-CSF) induces an increase in the level of soluble VEGFR1 in colon cancer patients undergoing minimally invasive surgery. Eur J Surg Oncol 33:1169–1176.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, M., Azuma, E., Ido, M., Hirayama, M., Jiang, Q., Iwamoto, S., Kumamoto, T., Yamamoto, H., Sakurai, M. and Komada, Y. 2001. A pivotal role of Rho GTPase in the regulation of morphology and function of dendritic cells. J Immunol 167:3585–3591.

    PubMed  CAS  Google Scholar 

  • Kunzmann, V., Kretzschmar, E., Herrmann, T. and Wilhelm, M. 2004. Polyinosinic-polycytidylic acid-mediated stimulation of human gammadelta T cells via CD11c dendritic cell-derived type I interferons. Immunology 112:369–377.

    Article  PubMed  CAS  Google Scholar 

  • Kyoizumi, S., McCune, J. M. and Namikawa, R. 1994. Direct evaluation of radiation damage in human hematopoietic progenitor cells in vivo. Radiat Res 137:76–83.

    Article  PubMed  CAS  Google Scholar 

  • Laane, E., Bjorklund, E., Mazur, J., Lonnerholm, G., Soderhall, S. and Porwit, A. 2007. Dendritic cell regeneration in the bone marrow of children treated for acute lymphoblastic leukaemia. Scand J Immunol 66:572–583.

    Article  PubMed  CAS  Google Scholar 

  • Lake, R. A. and Robinson, B. W. 2005. Immunotherapy and chemotherapy – a practical partnership. Nat Rev Cancer 5:397–405.

    Article  PubMed  CAS  Google Scholar 

  • Laquente, B., Vinals, F. and Germa, J. R. 2007. Metronomic chemotherapy: an antiangiogenic scheduling. Clin Transl Oncol 9:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Le Poole, I. C., Bommiasamy, H. and Kast, W. M. 2003. Recent progress in tumour vaccine development. Expert Opin Investig Drugs 12:971–981.

    Article  PubMed  CAS  Google Scholar 

  • Liao, Y. P., Schaue, D. and McBride, W. H. 2007. Modification of the tumor microenvironment to enhance immunity. Front Biosci 12:3576–3600.

    Article  PubMed  CAS  Google Scholar 

  • Liao, Y. P., Wang, C. C., Butterfield, L. H., Economou, J. S., Ribas, A., Meng, W. S., Iwamoto, K. S. and McBride, W. H. 2004. Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. J Immunol 173:2462–2469.

    PubMed  CAS  Google Scholar 

  • Lissoni, P., Malugani, F., Bonfanti, A., Bucovec, R., Secondino, S., Brivio, F., Ferrari-Bravo, A., Ferrante, R., Vigore, L., Rovelli, F., Mandala, M., Viviani, S., Fumagalli, L. and Gardani, G. S. 2001. Abnormally enhanced blood concentrations of vascular endothelial growth factor (VEGF) in metastatic cancer patients and their relation to circulating dendritic cells, IL-12 and endothelin-1. J Biol Regul Homeost Agents 15:140–144.

    PubMed  CAS  Google Scholar 

  • Liu, W. C., Wang, S. C., Tsai, M. L., Chen, M. C., Wang, Y. C., Hong, J. H., McBride, W. H. and Chiang, C. S. 2006. Protection against radiation-induced bone marrow and intestinal injuries by Cordyceps sinensis, a Chinese herbal medicine. Radiat Res 166:900–907.

    Article  PubMed  CAS  Google Scholar 

  • Lutgendorf, S. K., Cole, S., Costanzo, E., Bradley, S., Coffin, J., Jabbari, S., Rainwater, K., Ritchie, J. M., Yang, M. and Sood, A. K. 2003. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res 9:4514–4521.

    PubMed  CAS  Google Scholar 

  • Markowicz, S., Walewski, J., Zajda, K., Wiechno, P. J., Skurzak, H. M., Giermek, J., Gajkowska, A., Krzakowski, M. and Pienkowski, T. 2002. Recovery of dendritic cell counts and function in peripheral blood of cancer patients after chemotherapy. Cytokines Cell Mol Ther 7:15–24.

    Article  PubMed  CAS  Google Scholar 

  • Mihich, E. 1967. [Antitumor chemotherapy. Considerations on the potential role of immunity]. Pathol Biol 15:209–214.

    PubMed  CAS  Google Scholar 

  • Mihich, E. 2000a. New leads in cancer therapeutics: a keynote address. Medicina (B Aires) 60 Suppl 2:4–8.

    Google Scholar 

  • Mihich, E. 2000b. On the immunomodulating effects of anti-cancer drugs and their therapeutic exploitation. Jpn J Clin Oncol 30:469–471.

    Article  PubMed  CAS  Google Scholar 

  • Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., Burg, G. and Schadendorf, D. 1998. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332.

    Article  PubMed  CAS  Google Scholar 

  • Ng, C. S., Lee, T. W., Wan, S., Wan, I. Y., Sihoe, A. D., Arifi, A. A. and Yim, A. P. 2005. Thoracotomy is associated with significantly more profound suppression in lymphocytes and natural killer cells than video-assisted thoracic surgery following major lung resections for cancer. J Invest Surg 18:81–88.

    Article  PubMed  Google Scholar 

  • Nowak, A. K., Lake, R. A., Marzo, A. L., Scott, B., Heath, W. R., Collins, E. J., Frelinger, J. A. and Robinson, B. W. 2003. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 170:4905–4913.

    PubMed  CAS  Google Scholar 

  • Nowak, A. K., Lake, R. A. and Robinson, B. W. 2006. Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev 58:975–990.

    CAS  Google Scholar 

  • O'Neill, D. W. and Bhardwaj, N. 2007. Exploiting dendritic cells for active immunotherapy of cancer and chronic infections. Mol Biotechnol 36:131–141.

    Article  PubMed  Google Scholar 

  • Ogata, M., Okamoto, K., Kohriyama, K., Kawasaki, T., Itoh, H. and Shigematsu, A. 2000. Role of interleukin-10 on hyporesponsiveness of endotoxin during surgery. Crit Care Med 28:3166–3170.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsukasa, S., Okabe, S., Yamashita, H., Iwai, T. and Sugihara, K. 2003. Increased expression of CEA and MHC class I in colorectal cancer cell lines exposed to chemotherapy drugs. J Cancer Res Clin Oncol 129:719–726.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki, T., Ebihara, S., Asada, M., Kanda, A., Sasaki, H. and Yamaya, M. 2006. Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int Immunol 18:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki, T., Ebihara, S., Takahashi, H., Asada, M., Kanda, A. and Sasaki, H. 2005. Macrophage colony-stimulating factor induces vascular endothelial growth factor production in skeletal muscle and promotes tumor angiogenesis. J Immunol 174:7531–7538.

    PubMed  CAS  Google Scholar 

  • Page, G. G. 2005. Surgery-induced immunosuppression and postoperative pain management. AACN Clin Issues 16:302–309; quiz 416–308.

    Article  PubMed  Google Scholar 

  • Perrotta, C., Bizzozero, L., Falcone, S., Rovere-Querini, P., Prinetti, A., Schuchman, E. H., Sonnino, S., Manfredi, A. A. and Clementi, E. 2007. Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. Cancer Res 67:7559–7564.

    Article  PubMed  CAS  Google Scholar 

  • Rea, D., van Kooten, C., van Meijgaarden, K. E., Ottenhoff, T. H., Melief, C. J. and Offringa, R. 2000. Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood 95:3162–3167.

    PubMed  CAS  Google Scholar 

  • Rozkova, D., Horvath, R., Bartunkova, J. and Spisek, R. 2006. Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin Immunol 120:260–271.

    Article  PubMed  CAS  Google Scholar 

  • Shakhar, G., Abudarham, N., Melamed, R., Schwartz, Y., Rosenne, E. and Ben-Eliyahu, S. 2007. Amelioration of operation-induced suppression of marginating pulmonary NK activity using poly I-C: a potential approach to reduce postoperative metastasis. Ann Surg Oncol 14:841–852.

    Article  PubMed  Google Scholar 

  • Shakhar, G. and Ben-Eliyahu, S. 2003. Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients? Ann Surg Oncol 10:972–992.

    Google Scholar 

  • Shakhar, G. and Blumenfeld, B. 2003. Glucocorticoid involvement in suppression of NK activity following surgery in rats. J Neuroimmunol 138:83–91.

    Article  PubMed  CAS  Google Scholar 

  • Shin, J. Y., Lee, S. K., Kang, C. D., Chung, J. S., Lee, E. Y., Seo, S. Y., Lee, S. Y., Baek, S. Y., Kim, B. S., Kim, J. B. and Yoon, S. 2003. Antitumor effect of intratumoral administration of dendritic cell combination with vincristine chemotherapy in a murine fibrosarcoma model. Histol Histopathol 18:435–447.

    PubMed  CAS  Google Scholar 

  • Shu, S., Zheng, R., Lee, W. T. and Cohen, P. A. 2007. Immunogenicity of dendritic-tumor fusion hybrids and their utility in cancer immunotherapy. Crit Rev Immunol 27:463–483.

    PubMed  CAS  Google Scholar 

  • Shurin, G. V., Tourkova, I. L., Chatta, G. S., Schmidt, G., Wei, S., Djeu, J. Y. and Shurin, M. R. 2005. Small rho GTPases regulate antigen presentation in dendritic cells. J Immunol 174:3394–3400.

    PubMed  CAS  Google Scholar 

  • Shurin, G. V., Tourkova, I. L. and Shurin, M. R. 2008. Low-dose chemotherapeutic agents regulate small Rho GTPase activity in dendritic cells. J Immunother 31:491–499.

    Article  PubMed  CAS  Google Scholar 

  • Shurin, M. R., Shurin, G. V., Lokshin, A., Yurkovetsky, Z. R., Gutkin, D. W., Chatta, G., Zhong, H., Han, B. and Ferris, R. L. 2006. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356.

    PubMed  CAS  Google Scholar 

  • Steer, J. H., Vuong, Q. and Joyce, D. A. 1997. Suppression of human monocyte tumour necrosis factor-alpha release by glucocorticoid therapy: relationship to systemic monocytopaenia and cortisol suppression. Br J Clin Pharmacol 43:383–389.

    Article  PubMed  CAS  Google Scholar 

  • Stone, H. B., Coleman, C. N., Anscher, M. S. and McBride, W. H. 2003. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 4:529–536.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Satoi, S., Yanagimoto, H., Terakawa, N., Toyokawa, H., Yamamoto, T., Matsui, Y., Takai, S., Kwon, A. H. and Kamiyama, Y. 2007. Circulating dendritic cells and development of septic complications after pancreatectomy for pancreatic cancer. Arch Surg 142:1151–1157; discussion 1157.

    Article  PubMed  Google Scholar 

  • Teitz-Tennenbaum, S., Li, Q., Okuyama, R., Davis, M. A., Sun, R., Whitfield, J., Knibbs, R. N., Stoolman, L. M. and Chang, A. E. 2008. Mechanisms involved in radiation enhancement of intratumoral dendritic cell therapy. J Immunother 31:345–358.

    Article  PubMed  Google Scholar 

  • Teitz-Tennenbaum, S., Li, Q., Rynkiewicz, S., Ito, F., Davis, M. A., McGinn, C. J. and Chang, A. E. 2003. Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Cancer Res 63:8466–8475.

    PubMed  CAS  Google Scholar 

  • Thaker, P. H., Han, L. Y., Kamat, A. A., Arevalo, J. M., Takahashi, R., Lu, C., Jennings, N. B., Armaiz-Pena, G., Bankson, J. A., Ravoori, M., Merritt, W. M., Lin, Y. G., Mangala, L. S., Kim, T. J., Coleman, R. L., Landen, C. N., Li, Y., Felix, E., Sanguino, A. M., Newman, R. A., Lloyd, M., Gershenson, D. M., Kundra, V., Lopez-Berestein, G., Lutgendorf, S. K., Cole, S. W. and Sood, A. K. 2006. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939–944.

    Article  PubMed  CAS  Google Scholar 

  • Tong, Y., Song, W. and Crystal, R. G. 2001. Combined intratumoral injection of bone marrow-derived dendritic cells and systemic chemotherapy to treat `existing murine tumors. Cancer Res 61:7530–7535.

    PubMed  CAS  Google Scholar 

  • Tourkova, I. L., Shurin, G. V., Wei, S. and Shurin, M. R. 2007. Small rho GTPases mediate tumor-induced inhibition of endocytic activity of dendritic cells. J Immunol 178:7787–7793.

    PubMed  CAS  Google Scholar 

  • Tubiana, M., Carde, P. and Frindel, E. 1993. Ways of minimising hematopoietic damage induced by radiation and cytostatic drugs – the possible role of inhibitors. Radiother Oncol 29:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Utoh, J., Yamamoto, T., Utsunomiya, T., Kambara, T., Goto, H. and Miyauchi, Y. 1988. Effect of surgery on neutrophil functions, superoxide and leukotriene production. Br J Surg 75:682–685.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven, G. T., Van Haarst, J. M., De Wit, H. J., Simons, P. J., Hoogsteden, H. C. and Drexhage, H. A. 2000. Glucocorticoids hamper the ex vivo maturation of lung dendritic cells from their low autofluorescent precursors in the human bronchoalveolar lavage: decreases in allostimulatory capacity and expression of CD80 and CD86. Clin Exp Immunol 122:232–240.

    Article  PubMed  CAS  Google Scholar 

  • Werling, D., Hope, J. C., Howard, C. J. and Jungi, T. W. 2004. Differential production of cytokines, reactive oxygen and nitrogen by bovine macrophages and dendritic cells stimulated with Toll-like receptor agonists. Immunology 111:41–52.

    Article  PubMed  CAS  Google Scholar 

  • Whelan, R. L., Franklin, M., Holubar, S. D., Donahue, J., Fowler, R., Munger, C., Doorman, J., Balli, J. E., Glass, J., Gonzalez, J. J., Bessler, M., Xie, H. and Treat, M. 2003. Postoperative cell mediated immune response is better preserved after laparoscopic vs open colorectal resection in humans. Surg Endosc 17:972–978.

    Article  PubMed  CAS  Google Scholar 

  • Yu, B., Kusmartsev, S., Cheng, F., Paolini, M., Nefedova, Y., Sotomayor, E. and Gabrilovich, D. 2003. Effective combination of chemotherapy and dendritic cell administration for the treatment of advanced-stage experimental breast cancer. Clin Cancer Res 9:285–294.

    PubMed  CAS  Google Scholar 

  • Zhao, J., Kim, J. E., Reed, E. and Li, Q. Q. 2005. Molecular mechanism of antitumor activity of taxanes in lung cancer (Review). Int J Oncol 27:247–256.

    PubMed  CAS  Google Scholar 

  • Zhong, H., Han, B., Tourkova, I. L., Lokshin, A., Rosenbloom, A., Shurin, M. R. and Shurin, G. V. 2007a. Low-dose paclitaxel prior to intratumoral dendritic cell vaccine modulates intratumoral cytokine network and lung cancer growth. Clin Cancer Res 13:5455–5462.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, H., Shurin, M. R. and Han, B. 2007b. Optimizing dendritic cell-based immunotherapy for cancer. Expert Rev Vaccines 6:333–345.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina V. Shurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shurin, G.V., Amina, N., Shurin, M.R. (2009). Cancer Therapy and Dendritic Cell Immunomodulation. In: Salter, R., Shurin, M. (eds) Dendritic Cells in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88611-4_14

Download citation

Publish with us

Policies and ethics