Tumor-Associated Inflammation and Impact on Dendritic Cell Function

  • Zoltan Pos
  • Marianna Sabatino
  • Tara Spivey
  • Hui Liu
  • Andras Falus
  • Francesco M. Marincola


Tumor-associated inflammation is a frequently observed phenomenon considered to be one of the major hallmarks of neoplastic disease progression. Recent data show that inflammatory processes around malignancies are able to both support and suppress neoplastic progression depending on the phase of tumor progression or the cytokine context of ongoing immunological processes in the tumor microenvironment. Recent concepts of malignancy-associated inflammation and its impact on dendritic cell functions suggest that the net effect of inflammation on the balance between tumor growth and dendritic cell-controlled immunity is continuously changing over time, as inflammatory signals are frequently re-interpreted along with cancer progression. Initially, inflammation sustains malignant conversion and supports survival of tumor cells in cryptic cancers; however, it also allows their recognition by dendritic cells via damage-associated molecular patterns. In progressing cancers, inflammation contributes to malignant invasion, angiogenesis, and metastasis formation. In addition, via suppressing dendritic cell activation, maturation, and disrupting communication between dendritic cells and NK or T cells, it also corrupts antitumor immune responses launched by both the innate and adaptive immune systems. On the other hand, upon appropriate stimulation of specific toll-like receptors, tumor-infiltrating myeloid and plasmacytoid dendritic cells can be successfully activated, leading to harsh inflammatory reactions ultimately resulting in rapid rejection of tumor cells. Thus, ubiquitous presence of inflammation around tumors can be exploited not only for early detection of cryptic malignant lesions but also for inducing dendritic cell-mediated rejection of established malignancies.


Dendritic Cell Antitumor Immune Response Established Tumor Plasmacytoid Dendritic Cell Dendritic Cell Maturation 


  1. Aggarwal, B. B., Shishodia, S., Sandur, S. K., Pandey, M. K. and Sethi, G. 2006. Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621.PubMedCrossRefGoogle Scholar
  2. Arina, A., Murillo, O., Dubrot, J., Azpilikueta, A., Alfaro, C., Perez-Gracia, J. L., Bendandi, M., Palencia, B., Hervas-Stubbs, S. and Melero, I. 2007. Cellular liaisons of natural killer lymphocytes in immunology and immunotherapy of cancer. Expert Opin Biol Ther 7:599–615.PubMedCrossRefGoogle Scholar
  3. Arnott, C. H., Scott, K. A., Moore, R. J., Hewer, A., Phillips, D. H., Parker, P., Balkwill, F. R. and Owens, D. M. 2002. Tumour necrosis factor-alpha mediates tumour promotion via a PKC alpha- and AP-1-dependent pathway. Oncogene 21:4728–4738.PubMedCrossRefGoogle Scholar
  4. Balkwill, F. and Mantovani, A. 2001. Inflammation and cancer: back to Virchow? Lancet 357:539–545.PubMedCrossRefGoogle Scholar
  5. Ben-Baruch, A. 2006. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16:38–52.PubMedCrossRefGoogle Scholar
  6. Bui, J. D. and Schreiber, R. D. 2007. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol 19:203–208.PubMedCrossRefGoogle Scholar
  7. Carneiro, L. A., Magalhaes, J. G., Tattoli, I., Philpott, D. J. and Travassos, L. H. 2008. Nod-like proteins in inflammation and disease. J Pathol 214:136–148.PubMedCrossRefGoogle Scholar
  8. Chen, R., Alvero, A. B., Silasi, D. A., Steffensen, K. D. and Mor, G. 2008. Cancers take their Toll--the function and regulation of Toll-like receptors in cancer cells. Oncogene 27:225–233.PubMedCrossRefGoogle Scholar
  9. Chomarat, P., Banchereau, J., Davoust, J. and Palucka, A. K. 2000. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1:510–514.PubMedCrossRefGoogle Scholar
  10. Cools, N., Ponsaerts, P., Van Tendeloo, V. F. and Berneman, Z. N. 2007. Regulatory T cells and human disease. Clin Dev Immunol 2007:89195.PubMedCrossRefGoogle Scholar
  11. Coussens, L. M. and Werb, Z. 2002. Inflammation and cancer. Nature 420:860–867.PubMedCrossRefGoogle Scholar
  12. DeNardo, D. G., Johansson, M. and Coussens, L. M. 2008. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev 27:11–18.PubMedCrossRefGoogle Scholar
  13. Dhodapkar, M. V., Dhodapkar, K. M. and Palucka, A. K. 2008. Interactions of tumor cells with dendritic cells: balancing immunity and tolerance. Cell Death Differ 15:39–50.PubMedCrossRefGoogle Scholar
  14. Diegelmann, R. F. and Evans, M. C. 2004. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289.PubMedCrossRefGoogle Scholar
  15. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. and Schreiber, R. D. 2002. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998.PubMedCrossRefGoogle Scholar
  16. Dunn, G. P., Old, L. J. and Schreiber, R. D. 2004. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148.PubMedCrossRefGoogle Scholar
  17. Fallarino, F., Grohmann, U., Hwang, K. W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M. L., Fioretti, M. C., Alegre, M. L. and Puccetti, P. 2003. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212.PubMedCrossRefGoogle Scholar
  18. Gorski, K. S., Waller, E. L., Bjornton-Severson, J., Hanten, J. A., Riter, C. L., Kieper, W. C., Gorden, K. B., Miller, J. S., Vasilakos, J. P., Tomai, M. A. and Alkan, S. S. 2006. Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists. Int Immunol 18:1115–1126.PubMedCrossRefGoogle Scholar
  19. Grulich, A. E., van Leeuwen, M. T., Falster, M. O. and Vajdic, C. M. 2007. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370:59–67.PubMedCrossRefGoogle Scholar
  20. Hudson, J. D., Shoaibi, M. A., Maestro, R., Carnero, A., Hannon, G. J. and Beach, D. H. 1999. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 190:1375–1382.PubMedCrossRefGoogle Scholar
  21. Karin, M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436.PubMedCrossRefGoogle Scholar
  22. Kedrin, D., van Rheenen, J., Hernandez, L., Condeelis, J. and Segall, J. E. 2007. Cell motility and cytoskeletal regulation in invasion and metastasis. J Mammary Gland Biol Neoplasia 12:143–152.PubMedCrossRefGoogle Scholar
  23. Kijima, M., Yamaguchi, T., Ishifune, C., Maekawa, Y., Koyanagi, A., Yagita, H., Chiba, S., Kishihara, K., Shimada, M. and Yasutomo, K. 2008. Dendritic cell-mediated NK cell activation is controlled by Jagged2-Notch interaction. Proc Natl Acad Sci USA 105:7010–7015.PubMedCrossRefGoogle Scholar
  24. Koebel, C. M., Vermi, W., Swann, J. B., Zerafa, N., Rodig, S. J., Old, L. J., Smyth, M. J. and Schreiber, R. D. 2007. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907.PubMedCrossRefGoogle Scholar
  25. Kroczek, R. A., Mages, H. W. and Hutloff, A. 2004. Emerging paradigms of T-cell co-stimulation. Curr Opin Immunol 16:321–327.PubMedCrossRefGoogle Scholar
  26. Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. and Flavell, R. A. 2006. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146.PubMedCrossRefGoogle Scholar
  27. Lucas, M., Schachterle, W., Oberle, K., Aichele, P. and Diefenbach, A. 2007. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26:503–517.PubMedCrossRefGoogle Scholar
  28. Maeda, H. and Akaike, T. 1998. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc) 63:854–865.Google Scholar
  29. Mager, D. L. 2006. Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med 4:14.PubMedCrossRefGoogle Scholar
  30. Mantovani, A., Romero, P., Palucka, A. K. and Marincola, F. M. 2008. Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371:771–783.PubMedCrossRefGoogle Scholar
  31. Marelli-Berg, F. M., Okkenhaug, K. and Mirenda, V. 2007. A two-signal model for T cell trafficking. Trends Immunol 28:267–273.PubMedCrossRefGoogle Scholar
  32. Marincola, F. M., Wang, E., Herlyn, M., Seliger, B. and Ferrone, S. 2003. Tumors as elusive targets of T-cell-based active immunotherapy. Trends Immunol 24:335–342.PubMedCrossRefGoogle Scholar
  33. Martinez, F. O., Sica, A., Mantovani, A. and Locati, M. 2008. Macrophage activation and polarization. Front Biosci 13:453–461.PubMedCrossRefGoogle Scholar
  34. Mocellin, S., Mandruzzato, S., Bronte, V. and Marincola, F. M. 2004. Cancer vaccines: pessimism in check. Nat Med 10:1278–1279 (author reply 1279–1280).PubMedCrossRefGoogle Scholar
  35. Monsurro, V., Wang, E., Yamano, Y., Migueles, S. A., Panelli, M. C., Smith, K., Nagorsen, D., Connors, M., Jacobson, S. and Marincola, F. M. 2004. Quiescent phenotype of tumor-specific CD8+ T cells following immunization. Blood 104:1970–1978.PubMedCrossRefGoogle Scholar
  36. Moore, K. W., O'Garra, A., de Waal Malefyt, R., Vieira, P. and Mosmann, T. R. 1993. Interleukin-10. Annu Rev Immunol 11:165–190.PubMedCrossRefGoogle Scholar
  37. Muruve, D. A., Petrilli, V., Zaiss, A. K., White, L. R., Clark, S. A., Ross, P. J., Parks, R. J. and 1Tschopp, J. 2008. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107.PubMedCrossRefGoogle Scholar
  38. Panelli, M. C., Stashower, M. E., Slade, H. B., Smith, K., Norwood, C., Abati, A., Fetsch, P., Filie, A., Walters, S. A., Astry, C., Arico, E., Zhao, Y., Selleri, S., Wang, E. and Marincola, F. M. 2007. Sequential gene profiling of basal cell carcinomas treated with imiquimod in a placebo-controlled study defines the requirements for tissue rejection. Genome Biol 8:R8.PubMedCrossRefGoogle Scholar
  39. Papadavid, E., Stratigos, A. J. and Falagas, M. E. 2007. Imiquimod: an immune response modifier in the treatment of precancerous skin lesions and skin cancer. Expert Opin Pharmacother 8:1743–1755.PubMedCrossRefGoogle Scholar
  40. Pawelec, G. 2004. Tumour escape: antitumour effectors too much of a good thing? Cancer Immunol Immunother 53:262–274.PubMedCrossRefGoogle Scholar
  41. Rock, K. L. and Kono, H. 2008. The inflammatory response to cell death. Annu Rev Pathol 3:99–126.PubMedCrossRefGoogle Scholar
  42. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. and Dudley, M. E. 2008. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308.PubMedCrossRefGoogle Scholar
  43. Rosenberg, S. A., Yang, J. C. and Restifo, N. P. 2004. Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915.PubMedCrossRefGoogle Scholar
  44. Sauter, B., Albert, M. L., Francisco, L., Larsson, M., Somersan, S. and Bhardwaj, N. 2000. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191:423–434.PubMedCrossRefGoogle Scholar
  45. Schiller, M., Metze, D., Luger, T. A., Grabbe, S. and Gunzer, M. 2006. Immune response modifiers--mode of action. Exp Dermatol 15:331–341.PubMedCrossRefGoogle Scholar
  46. Schon, M. P. and Schon, M. 2008. TLR7 and TLR8 as targets in cancer therapy. Oncogene 27:190–199.PubMedCrossRefGoogle Scholar
  47. Shankaran, V., Ikeda, H., Bruce, A. T., White, J. M., Swanson, P. E., Old, L. J. and Schreiber, R. D. 2001. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111.PubMedCrossRefGoogle Scholar
  48. Shanker, A., Verdeil, G., Buferne, M., Inderberg-Suso, E. M., Puthier, D., Joly, F., Nguyen, C., Leserman, L., Auphan-Anezin, N. and Schmitt-Verhulst, A. M. 2007. CD8 T cell help for innate antitumor immunity. J Immunol 179:6651–6662.PubMedGoogle Scholar
  49. Sica, A., Schioppa, T., Mantovani, A. and Allavena, P. 2006. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727.PubMedCrossRefGoogle Scholar
  50. Sombroek, C. C., Stam, A. G., Masterson, A. J., Lougheed, S. M., Schakel, M. J., Meijer, C. J., Pinedo, H. M., van den Eertwegh, A. J., Scheper, R. J. and de Gruijl, T. D. 2002. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168:4333–4343.PubMedGoogle Scholar
  51. Stary, G., Bangert, C., Tauber, M., Strohal, R., Kopp, T. and Stingl, G. 2007. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med 204:1441–1451.PubMedCrossRefGoogle Scholar
  52. Strieter, R. M., Burdick, M. D., Mestas, J., Gomperts, B., Keane, M. P. and Belperio, J. A. 2006. Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 42:768–778.PubMedCrossRefGoogle Scholar
  53. Talmadge, J. E., Donkor, M. and Scholar, E. 2007. Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26:373–400.PubMedCrossRefGoogle Scholar
  54. Tan, T. T. and Coussens, L. M. 2007. Humoral immunity, inflammation and cancer. Curr Opin Immunol 19:209–216.PubMedCrossRefGoogle Scholar
  55. Tesniere, A., Panaretakis, T., Kepp, O., Apetoh, L., Ghiringhelli, F., Zitvogel, L. and Kroemer, G. 2008. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15:3–12.PubMedCrossRefGoogle Scholar
  56. Torres, D., Paget, C., Fontaine, J., Mallevaey, T., Matsuoka, T., Maruyama, T., Narumiya, S., Capron, M., Gosset, P., Faveeuw, C. and Trottein, F. 2008. Prostaglandin D2 inhibits the production of IFN-gamma by invariant NK T cells: consequences in the control of B16 melanoma. J Immunol 180:783–792.PubMedGoogle Scholar
  57. Viorritto, I. C., Nikolov, N. P. and Siegel, R. M. 2007. Autoimmunity versus tolerance: can dying cells tip the balance? Clin Immunol 122:125–134.PubMedCrossRefGoogle Scholar
  58. Ward, R. C. and Kaufman, H. L. 2007. Targeting costimulatory pathways for tumor immunotherapy. Int Rev Immunol 26:161–196.PubMedCrossRefGoogle Scholar
  59. Xu, J., Chakrabarti, A. K., Tan, J. L., Ge, L., Gambotto, A. and Vujanovic, N. L. 2007. Essential role of the TNF-TNFR2 cognate interaction in mouse dendritic cell-natural killer cell crosstalk. Blood 109:3333–3341.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Zoltan Pos
  • Marianna Sabatino
  • Tara Spivey
  • Hui Liu
  • Andras Falus
  • Francesco M. Marincola
    • 1
  1. 1.NIH CCBethesdaUSA

Personalised recommendations