Advertisement

FeRAM

  • Shoichiro Kawashima
  • Jeffrey S. Cross
Chapter
Part of the Integrated Circuits and Systems book series (ICIR)

Ferroelectric materials show spontaneous polarization; FeRAM utilizes the positive and negative polarization direction corresponding to “1” and “0” states for stored data. The basic idea behind FeRAM appeared in 1963 [1] and 1988 [2], however, there have been many scientific and technical improvements needed to convert FeRAM technology into manufactured devices and still further improvements in materials, process fabrication, and circuit architecture are required for further device scaling. This chapter intends to serve as a review primarily focusing on the timeframe from 2000 to 2007. Previously, circuit and architecture of FeRAM devices regarding circuit innovations up to 2000 was summarized by Prof.

Keywords

Spontaneous Polarization Error Correction Code Metal Organic Chemical Vapor Deposition Ferroelectric Material Thin Ferroelectric Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Dr. H. Arimoto and Mr. A. Inoue for their encouragement regarding the writing of this chapter, also appreciation is extended to Dr. T. Eshita, Dr. H. Tanaka, Dr. J. Watanabe, Dr. K. Sugiyama, and Mr. K. Takai for many useful discussions on material properties as well as the circuit and process engineers of Fujitsu Micro Electronics Ltd. (FML) for realizing BGS devices.

References

  1. 1.
    L. Moll and Y. Tarui, “A new solid state memory resistor," IEEE Trans. Electron Devices, vol. 10, no. 6, p. 338, Sept. 1963.CrossRefGoogle Scholar
  2. 2.
    J.T. Evans and R. Womack, “An experimental 512-bit nonvolatile memory with ferroelectric storage cell," IEEE J. Solid-State Circuits, vol. 23, no. 5, pp.1171–1175, Oct. 1998.CrossRefGoogle Scholar
  3. 3.
    A. Sheikholeslami and P. Gulak, “A survey of circuit innovations in ferroelectric random-access memories," Proc. IEEE, vol. 88, no. 5, pp.667–789, May 2000.Google Scholar
  4. 4.
    J. F. Scott, “Ferroelectric Memories," Advanced Microelectronics, Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co.KG, 2000.Google Scholar
  5. 5.
    H. Ishiwara, M. Okuyama, and Y. Arimoto (Eds,) “Ferroelectric random access memories," Fundamentals and applications, Topics in applied physics, vol. 93, Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2004.Google Scholar
  6. 6.
    J. F. Scott, “Limitations on ULSI-FeRAMs," IEICE Trans. Electron., vol. E81-C, no. 4, pp.477–487, Apr. 1998.Google Scholar
  7. 7.
  8. 8.
  9. 9.
    A. Onodera, S. Mouri, M. Fukunaga, S. Hiramatsu, M. Takesada, and H. Yamashita, “Phase transition in Bi-layered oxides with five perovskite layers," Jpn. J. Appl. Phys., vol. 45, no. 12, pp. 9125–9128, Dec. 2006.CrossRefGoogle Scholar
  10. 10.
    H. Yamashita, K. Yoshio, W. Murata, and A. Onodera, “Structural changes and ferroelectricity in Bi-layered SrBi2Ta2O9," Jpn. J. Appl. Phys., vol. 41, pt. 1, no. 11B, pp. 7076–7079, 2002.CrossRefGoogle Scholar
  11. 11.
    M.G. Stachiotti, C.O. Rodriguez, C. Ambrosch-Draxl, N. E. Christensen, “Electronic structure and ferroelectricity in SrBi2Ta2O9," Phys. Rev., B61, 14434, 2000. (http://prola.aps.org/abstract/PRB/v61/i21/p14434_1).
  12. 12.
    E. C. Subbarao, “Ferroelectricity in Bi4Ti3O12 and its solid solutions," Phys. Rev., vol. 122, no. 3, pp. 804–807, 1961. (http://prola.aps.org/abstract/PR/v122/i3/p804_1)
  13. 13.
    Ying-Hao Chu, Qian Zhan, L. W. Martin, M. P. Cruz, Pei-Ling Yang, G. W. Pabst, F. Zavaliche, Seung-Yeul Yang, Jing-Xian Zhang, Long-Qing Chen, D. G. Schlom, I.-Nan Lin,Tai-Bor Wu, and R. Ramesh, “Nanoscale domain control in multiferroic BiFeO3 thin films," Adv. Mater., vol. 18, pp. 2307–2311, 2006. Fig. 1(a):Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Y. Hosono and Y. Yamashita, “High-efficiency piezoelectric single crystals", Toshiba review, vol. 59, no. 10, pp.39–42, 2004 : Japanese language.Google Scholar
  16. 16.
  17. 17.
    Y. H. Chu, T. Zhao, M. P. Cruz, Q. Zhan, P. L. Yang, L. W. Martin, M. Huijben, C. H. Yang, F. Zavaliche, H. Zheng, and R. Ramesh, “Ferroelectric size effects in multiferroic BiFeO3 thin films," Appl. Phys. Lett., vol. 90, 252906, 2007.CrossRefGoogle Scholar
  18. 18.
    A. Sheikholeslami, P.G. Gulak, H. Takauchi, H. Tamura, H. Yoshioka, and T.Tamura, “A pulse-based, parallel-element macromodel for ferroelectric capacitors," IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, no. 4, pp. 784–791, Jul.2000.CrossRefGoogle Scholar
  19. 19.
    J. Chow, A. Sheikholeslami, J. S. Cross, and S. Masui, “A voltage-dependent switching-time (VDST) model of ferroelectric capacitors for low-voltage FeRAM circuits," Digest of Technical Papers, Symp. VLSI Circuits, pp. 448–449, Jun. 2004.Google Scholar
  20. 20.
    A. Gruverman, B. J. Rodriguez, C. Dehoff, J. D. Waldrep, A. I. Kingon, and R. J. Nemanich, “Direct studies of domain switching dynamics in thin film ferroelectric capacitors," Appl. Phys. Lett., vol. 87, 082902, 2005.CrossRefGoogle Scholar
  21. 21.
    S. Kawashima, I. Fukushi, K. Morita, K. Nakabayashi, M. Nakazawa, K.Yamane, T. Hirayama, and T. Endo, “A reliable 1T1C FeRAM using a thermal history tracking 2T2C dual reference level technique for a smart card application chip," IEICE Trans. Electron., vol. E90-C, no. 10, pp. 1941–1948, Oct. 2007.CrossRefGoogle Scholar
  22. 22.
    F. Chu, G. Fox, and T. Davenport, “Scaled PLZT thin film capacitors with excellent endurance and retention performance," Proc. MRS, Ferroelectric Thin Films IX, Symposium CC , vol. 655, CC1.2, 2001.Google Scholar
  23. 23.
    Y. Shimada, A. Inoue, T. Nasu, Y. Nagano, A. Matsuda, K. Arita, Y. Uemoto, E. Fujii, and T. Otsuki, “Time-dependent leakage current behavior of integrated Ba0.7Sr0.3TiO3 thin film capacitors during stressing," Jpn. J. Appl. Phys., vol. 35, pt. 1, no. 9B, pp. 4919–4924, Sep. 1996.CrossRefGoogle Scholar
  24. 24.
    T. Nakamura, Y. Nakao, A. Kamisawa, and H. Takasu, “Preparation of Pb(Zr,Ti)O3 thin films on Ir and IrO2 electrodes," Jpn. J. Appl. Phys., vol. 33, pt. 1, no. 9B, pp. 5207–5210, Sep. 1994.CrossRefGoogle Scholar
  25. 25.
    K. Arita, Y. Shimada, Y. Uemoto, S. Hayashi, M. Azuma, Y. Judai, T.Sumi, E. Fujii, T. Otsuki, L.D. McMillan, and Carlos A. Paz de Araujoz, “Ferroelectric nonvolatile memory technology with bismuth layer-structured ferroelectric materials," IEEE Proc., Tenth Inter. Symp. on Appl. Ferroelectrics, ISAF '96., vol. 1, pp.13–16, Aug. 1996.Google Scholar
  26. 26.
    X. J. Lou, M. Zhang, S. A. T. Redfern, and J. F. Scott, “Fatigue as a local phase decomposition: A switching-induced charge-injection model," Phys. Rev. B vol. 75, 224104, 2007.CrossRefGoogle Scholar
  27. 27.
    A. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, “Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features," J. Appl. Phys., vol. 90, no. 3, pp. 1387–1402, Aug. 2001.CrossRefGoogle Scholar
  28. 28.
    S. Aggarwal, S. R. Perusse, C. W. Tipton, R. Ramesh, H. D. Drew, T. Venkatesan, D. B. Romero, V. B. Podobedov, and A. Weber, “Effect of hydrogen on Pb(Zr,Ti)O3-based ferroelectric capacitors," Appl. Phys. Lett.,vol. 73, no. 14, pp. 1973–1975, Oct. 1998.CrossRefGoogle Scholar
  29. 29.
    J.S. Cross and M. Tsukada, “Degradation of PLZT capacitors at elevated temperature in deuterium gas accession," Trans. Mater. Res. Soc. Jpn., vol. 28, no. 1, pp.117–120,2003.Google Scholar
  30. 30.
    Y. Nagano, T. Mikawa, T. Kutsunai, S. Natsume, T. Tatsunari, T. Ito, A. Noma, T. Nasu, S. Hayashi, H. Hirano, Y. Gohou, Y. Judai, and E. Fujii, “Embedded ferroelectric memory technology with completely encapsulated hydrogen barrier structure," IEEE Trans. Semiconductor Manufacturing, vol. 18, no. 1, pp. 49–54, Feb. 2005.CrossRefGoogle Scholar
  31. 31.
    E. M. Philofsky, “FRAM-the ultimate memory," Sixth Biennial IEEE International Nonvolatile Memory Tech. Conf. 1996. , pp.99–104, Jun. 1996.Google Scholar
  32. 32.
    June-Mo Koo, Bum-Seok Seo, Sukpil Kim, Sangmin Shin, Jung-Hyun Lee, Hionsuck Baik, Jang-Ho Lee, Jun Ho Lee, Byoung-Jae Bae, Ji-Eun Lim, Dong-Chul Yoo, Soon-Oh Park, Hee-Suk Kim, Hee Han, Sunggi Baik, Jae-Young Choi, Yong Jun Park, and Youngsoo Park, “Fabrication of 3D trench PZT capacitors for 256Mbit FRAM device application,” IEEE Internatinal Electron Devices Meeting 2005. Tech. Digest., pp. 351–354, Dec. 2005.Google Scholar
  33. 33.
    Y. Kato, Y. Kaneko, H. Tanaka, K. Kaibara, S. Koyama, K. Isogai, T. Yamada, and Y. Shimada, “Overview and future challenge of ferroelectric random access memory technologies," Jpn. J. Appl. Phys., vol. 46, pt. 1, no. 4B, pp. 2157–2163, 2007.CrossRefGoogle Scholar
  34. 34.
    T. Ema, S. Kawanago, T. Nishi, S. Yoshida, H. Nishibe, T. Yabu, Y. Kodama, T. Nakano, M. Taguchi, “3-dimensional stacked capacitor cell for 16 and 64 M DRAMs," IEEE International Electron Devices Meeting 1988, IEDM '88. Tech. Digest., pp.592–595, 1988.Google Scholar
  35. 35.
    D. Takashima and I. Kunishima, “High-density chain ferroelectric random access memory (Chain FRAM)," IEEE J. Solid-State Circuits, vol. 33, pp. 787–792, May 1998.CrossRefGoogle Scholar
  36. 36.
    K. Hoya, D. Takashima, S. Shiratake, R. Ogiwara, T. Miyakawa, H. Shiga, S. Doumae, S. Ohtsuki, Y. Kumura, S. Shuto, T. Ozaki, K. Yamakawa, I. Kunishima, A. Nitayama, and S. Fujii, “A 64 Mb Chain FeRAM with quad-BL architecture and 200 MB/s burst," Dig. Tech. Papers 7.2, IEEE International Solid-State Circuits Conference, pp. 459–466, Feb. 2006Google Scholar
  37. 37.
    H. Kanaya, K. Tomioka, T. Matsushita, M. Omura, T. Ozaki, Y. Kumura, Y. Shimojo, T. Morimoto, O. Hidaka, S. Shuto, H. Koyama, Y. Yamada, K. Osari, N. Tokoh, F. Fujisaki, N. Iwabuchi, N. Yamaguchi, T. Watanabe, M. Yabuki, H. Shinomiya, N. Watanabe, E. Itoh, R. Tsuchiya, K. Yamakawa, K. Natori, S. Yamazaki, K. Nakazawa, D. Takashima, S. Shiratake, S. Ohtsuki, Y. Oowaki, I. Kunishima, and A. Nitayama, ” A 0.602 μm2 nestled 'Chain' cell structure formed by one-mask etching process for 64 Mbit FeRAM”, IEEE Dig. Tech. Papers, Symp. VLSI Technology, pp. 150–151, Jun. 2004.Google Scholar
  38. 38.
  39. 39.
    S. Deleonibus (EDT), “Electronic device architectures for the nano-CMOS era,” : From ultimate CMOS scaling to beyond CMOS device : Publisher: World Scientific Pub. Co. Inc. to be published 2008/08, -US-ISBN:9789814241281, in “FRAM and MRAM” chaptor by Y. Arimoto.Google Scholar
  40. 40.
    H.P. McAdams, R. Acklin, T. Blake, Xiao-Hong Du, J. Eliason, J. Fong, W. F. Kraus, D. Liu, S. Madan, T. Moise, S. Natarajan, N.Qian, Y. Qiu, K. A. Remack, J. Rodriguez, J. Roscher, A. Seshadri, and S. R. Summerfelt, “A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process," IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 667–677, Apr. 2004.CrossRefGoogle Scholar
  41. 41.
    J. Siu, Y. Eslami, A. Sheikholeslami, P. Gulak, T. Endo and S. Kawashima, “A 16 kb 1T1C FeRAM testchip using current-based reference scheme," IEEE Proc. 2002 Custom Integrated Circuits Conference, 7.3.1, pp. 107–110, May 2002.Google Scholar
  42. 42.
    S. Kawashima, T. Endo, A. Yamamoto, K. Nakabayashi, M. Nakazawa, K. Morita, and M. Aoki, “Bitline GND sensing technique for low-voltage operation FeRAM," IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 592–598, May 2002.CrossRefGoogle Scholar
  43. 43.
    B.-J.Min, K.-W. Lee, H.-J. Lee, S.-R. Kim, S.-G. Oh, B.-G. Jeon, H.-H. Yang, M.-K. Kim, S.-H. Cho, H. Cheong, C. Chung, and K. Kim, “An embedded non-volatile FRAM with electrical fuse repair scheme and one time programming scheme for high performance smart cards," Proc. IEEE 2005 Custom Integrated Circuits Conference, P-16-1, pp.255–258, Sept. 2005.Google Scholar
  44. 44.
    C. Ohno, H. Yamazaki, H. Suzuki. E. Nagai, H. Miyazawa, K. Saigoh, T. Yamazaki, Y. Chung, W. Kraus, D. Verhaeghe, G. Argos, J. Walberl, and S. Mitra, “A highly reliable 1T1C 1 Mb FRAM with novel ferro-programmable redundancy scheme," Dig. Tech. Papers IEEE International Solid-State Circuits Conference, 2.5, pp. 36–37, Feb. 2001.Google Scholar
  45. 45.
  46. 46.
    Wei Liu, J. Rho, and W. Sung, “Low-power high-throughput BCH error correction VLSI design for multi-level cell NAND Flash memories," IEEE Workshop on Sig. Proc. Sys. Design and Implementation, SIPS '06, pp. 303–308, Oct. 2006.Google Scholar
  47. 47.
    Fei Sun, S. Devarajan, K. Rose, T. Zhan, “Multilevel flash memory on-chip error correction based on trellis coded modulation," IEEE Proc. 2006 International Symposium on Circuits and Systems, pp.1443–1446, May 2006.Google Scholar
  48. 48.
    S. Gregori, A. Cabrini, O. Khouri, and G. Torelli, “On-chip error correcting techniques for new-generation flash memories," Proc. IEEE, vol. 91, no. 4, pp. 602–616, Apr. 2003.Google Scholar
  49. 49.
    M. Spica and T.M. Mak, “Do we need anything more than single bit error correction (ECC)?" Rec. 2004 International Workshop on Memory Technology, Design and Testing, pp. 111–116, Aug. 2004:Google Scholar
  50. 50.
    J. Eliason, S. Madan, H. McAdams, G. Fox, T. Moise, C. Lin, K. Schwartz, J. Gallia, E. Jabillo, B. Kraus, and S. Summerfelt, “An 8 Mb 1T1C ferroelectric memory with zero cancellation and micro-granularity redundancy," Proc. IEEE 2005 Custom Integrated Circuits Conference, pp. 427–430, Sept. 2005.Google Scholar
  51. 51.
    HM71V832(32 K x8) data sheet, Hitach(1995):http://www.datasheetarchive.com/H-195.htm
  52. 52.
    MB85RS256(SPI256K) data sheet, Fujitsu(2005): http://edevice.fujitsu.com/fj/DATASHEET/ e-ds/e513105.pdf
  53. 53.
    S. Masui, T. Ninomiya, M. Oura, W. Yokozeki, K. Mukaida, and S. Kawashima, “A ferroelectric memory-based secure dynamically programmable gate array," IEEE J. Solid-State Circuits, vol. 38, no. 5, pp. 715–725, May 2003.CrossRefGoogle Scholar
  54. 54.
    H. Hirano, T. Honda, N. Moriwaki, T. Nakakuma, A. Inoue, G. Nakane, S. Chaya, and T. Sumi, “2-V/100-ns 1T/1C nonvolatile ferroelectric memory architecture with bitline-driven read scheme and nonrelaxation reference cell," IEEE J. Solid-State Circuits, vol. 32, no. 5, pp.649–654, May 1997.CrossRefGoogle Scholar
  55. 55.
    H. Takasu, FED Review, vol. 2, no. 7, pp. 1–24, Feb. 2003 ; Japanese language. Also in SS.10, H. Ishiwara, T.Fuchigami et al ‘Recent progress in ferroelectric memories,’ CMC publishing ISBN4-88231-819-9 (Feb.2004) http://www.cmcbooks.co.jp/books/b0712.php; Japanese language.MathSciNetGoogle Scholar
  56. 56.
    Y. Kato, T. Yamada, and Y. Shimada, “0.18-μm nondestructive readout FeRAM using charge compensation technique,” IEEE Trans. Electron Devices, vol. 52, no. 12, pp.2616–2621, Dec. 2005. Also S. Koyama, Y. Kato, T. Yamada, and Y. Shimada, "Improvement in readout reliability of a nondestructive readout FeRAM by asymmetrical programming,“ International Meeting for Future of Electron Devices 2004, pp.125–126, Jul. 2004: describes asymmetry rewrite.CrossRefGoogle Scholar
  57. 57.
    Y. Kaneko, H. Tanaka, Y. Kato, and Y. Shimada, “Two-dimensional electron gas switching in an ultra thin epitaxial ZnO layer on a ferroelectric gate structure,” Ext. Abst. International Conference on Solid State Devices and Materials 2007, J-8-2, pp. 1156–1157, Sept. 2007.Google Scholar
  58. 58.
    K.R. Raiter, and B.F. Cockburn, “An investigation into three-level ferroelectric memory," IEEE International Workshop on Memory Technology, Design, and Testing 2005, pp. 38–43, Aug. 2005Google Scholar
  59. 59.
    Yan Li, S. Lee, Y. Fong, F. Pan, Tien-Chien Kuo, J. Park, T. Samaddar, H. Nguyen, M. Mui, K. Htoo, T. Kamei, M. Higashitani, E. Yero, G. Kwon, P. Kliza, J. Wan, T. Kaneko, H. Maejima, H. Shiga, M. Hamada, N. Fujita, K. Kanebako, E. Tam, A. Koh, I. Lu, C. Kuo, T. Pham, J. Huynh, Q. Nguyen, H. Chibvongodze, M. Watanabe, K. Oowada, G. Shah, B. Woo, R. Gao, J. Chan, J. Lan, P. Hong, L. Peng, D. Das, D. Ghosh, V. Kalluru, S. Kulkarni, R. Cernea, S. Huynh, D. Pantelakis, Chi-Ming Wang, and K. Quader, “A 16 Gb 3b/ cell NAND Flash memory in 56-nm with 8 MB/s write rate," Dig. Tech. Papers IEEE International Solid-State Circuits Conference 2008, pp. 506–632, Feb. 2008.Google Scholar
  60. 60.
    T. Fukushima, A. Kawahara, T. Nanba, M. Matsumoto, T. Nishimoto, N. Ikeda, Y. Judai, T. Sumi, K. Arita, and T. Otsuki, “A microcontroller embedded with 4 Kbit ferroelectric non-volatile memory,” IEEE Dig. Tech. Papers, 1996 Symp. VLSI Circuits, pp. 46–47, Jun. 1996.Google Scholar
  61. 61.
    M.K. Seo, S.H. Sim, Y.H. Sim, M.H. On, S.W. Kim, I.W. Cho, H.S. Lee, G.H. Kim, and M.G. Kim, “A 0.9 V 66 MHz access, 0.13um 8 M(256 K 32) local SONOS embedded flash EEPROM," IEEE Dig. Tech. Papers, 2004 Symp. VLSI Circuits, pp. 68–71, Jun. 2004.Google Scholar
  62. 62.
    K. Honda, S. Hashimoto, and Y. Cho, “Visualization of electrons and holes localized in gate thin film of metal SiO2–Si3N4–SiO2 semiconductor-type flash memory using scanning nonlinear dielectric microscopy after writing-erasing cycling," Appl. Phys. Lett. 86, 063515, Feb. 2005.Google Scholar
  63. 63.
    K. Honda, S. Hashimoto and Y. Cho “Visualization of charges stored in the floating gate of flash memory by scanning nonlinear dielectric microscopy,” Nanotechnology 17 (2006) S185–S188, © 2006 IOP Publishing Ltd Printed in the UKGoogle Scholar
  64. 64.
    S.C. Philpy, D.A.Kamp, A.D. DeVilbiss, A.F. Isacson, and G.F. Derbenwick, “Ferroelectric memory technology for aerospace applications," IEEE Proc. 2000 Aerospace Conference. vol. 5, pp. 377–383, Mar. 2000.Google Scholar
  65. 65.
    J.M.Benedetto, W.M. De Lancey, T.R. Oldham, J.M. McGarrity, C.W. Tipton, M. Brassington, and D.E. Fisch, “Radiation evaluation of commercial ferroelectric nonvolatile memories," IEEE Trans. Nuclear Science, vol. 38, no. 6, pt. 1, pp. 1410–1414, Dec. 1991.CrossRefGoogle Scholar
  66. 66.
    J.H. Park, H.J. Joo, S.K. Kang, Y.M. Kang, H.S. Rhie, B.J. Koo, S.Y. Lee, B.J. Bae, J.E. Lim, H.S. Jeong, and K. Kim, “Fully logic compatible (1.6 V Vcc, 2 additional FRAM masks) highly reliable sub 10F2 embedded FRAM with advanced direct via technology and robust 100 nm thick MOCVD PZT technology," IEEE International Electron Devices Meeting Tech. Dig. , pp. 591–594, Dec. 2004.Google Scholar
  67. 67.
    Y. Kumura, T. Ozaki, H. Kanaya, O. Hidaka, Y. Shimojo, S. Shuto, Y. Yamada, K. Tomioka, K. Yamakawa, S. Yamazaki, D. Takashima, T. Miyakawa, S. Shiratake, S. Ohtsuki, I. Kunishima and A. Nitayama, “A SrRuO3/IrO2 top electrode FeRAM with Cu BEOL process for embedded memory of 130 nm generation and beyond," IEEE Proc. 35th European Solid-State Device Research Conference 2005, Paper 8.B.3, pp.557–560, Sept. 2005.Google Scholar
  68. 68.
    D. Takashima, Y. Takeuchi, T. Miyakawa, Y. Itoh, R. Ogiwara, M. Kamoshida, K. Hoya, S.M. Doumae, T. Ozaki, H. Kanaya, K. Yamakawa, I. Kunishima, and Y.Oowaki, “A 76-mm2 8-Mb chain ferroelectric memory," IEEE J. Solid State Circuits, vol. 36, no. 11, pp. 1713–1720, Nov. 2001.CrossRefGoogle Scholar
  69. 69.
  70. 70.
    K. Singh, D. K. Bopardikar, and D.V. Atkare, “A compendium of Tc-Us and Ps-Δz data for displacive ferroelectric," Ferroelectrics, vol. 82, pp. 55–67, Jun. 1988. Publisher: Taylor & Francis.CrossRefGoogle Scholar
  71. 71.
    G. W. Pabst, L. W. Martin, Ying-Hao Chu, and R. Ramesh, “Leakage mechanisms in BiFeO3 thin films", Appl. Phys. Lett. 90, 072902, Feb. 2007.Google Scholar
  72. 72.
    Y. Kato, H. Tanaka, K. Isogai, K. Kaibara, Y. Kaneko, Y. Shimada, M. Brubaker, J. Celinska, L.D. McMillan, C.A.P. de Araujo, “Embedded FeRAM challenges in the 65-nm technology node and beyond," IEEE ISAF '06. , pp. 81–84, Aug. 2006.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Fujitsu Microelectronics LimitedSystem Micro DivisionNakahara-kuJapan

Personalised recommendations