Advertisement

Embedded DRAM in Nano-scale Technologies

  • John Barth
Chapter
Part of the Integrated Circuits and Systems book series (ICIR)

Dynamic random access memory (DRAM) is a type of random access memory that uses charge stored on individual capacitors to hold data within an integrated circuit. Since these capacitors are non-ideal and suffer from parasitic leakages, the information eventually fades and the charge stored requires periodic refresh. Because of this refresh requirement, this memory type is classified as dynamic, in contrast to static random access memory (Fig. 5.1a) where a cross-coupled pair maintains the data state.

Keywords

Area Overhead Dynamic Random Access Memory Static Random Access Memory Instruction Memory Array Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Dreibelbis, J. Barth, H. Kalter, and R. Kho, “Processor Based Built-In Self Test for Embedded DRAM," IEEE J. Solid-State Circuits 33, No. 11, November 1998, 1731–1740CrossRefGoogle Scholar
  2. 2.
    T. Yabe, S. Miyano, K. Sato, M. Wada, R. Haga, O. Wada, M. Enkaku, T. Hojyo, K. Mimoto, M. Tazawa, T. Ohkubo, and K. Numata, “A Configurable DRAM Macro Design for 2112 Derivative Organizations to be Synthesized Using a Memory Generator," IEEE J. Solid-State Circuits 33, No. 11, November 1998, 1752–1757.CrossRefGoogle Scholar
  3. 3.
    NeoMagic Corporation, 3250 Jay St., Santa Clara, CA 95054. The NeoMagic memory and logic graphics processors were introduced in 1993; see http://www.neomagic.com/about/ history.asp.
  4. 4.
    G. Giacalone, R. Busch, F. Creed, A. Davidovich, S. Divakaruni, C. Drake, C. Ematrudo, J. Fifield, M. Hodges, W. Howell, P. Jenkins, M. Kozyrczak, C. Miller, T. Obremski, C. Reed, G. Rohrbaugh, M. Vincent, T. von Reyn, and J. Zimmerman, “A 1 MB, 100 MHz Integrated L2 Cache Memory with 128b Interface and ECC Protection," Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), 1996, pp. 370–371.Google Scholar
  5. 5.
    A guide to IBM embedded DRAM offerings can be found at http://www.ibm.com/chips/ techlib
  6. 6.
    S. Crowder, R. Hannon, H. Ho, D. Sinitsky, S. Wu, K. Winstel, B. Khan, S. R. Stiffler, and S. S. Iyer, “Integration of Trench DRAM into a High Performance 0.18 um Logic Technology with Copper BEOL," International Electron Devices Meeting, Digest of Technical Papers, 1998, pp. 1017–1020.Google Scholar
  7. 7.
    T. Obremski, “Advanced Non-Concurrent BIST Architecture for Deep Sub-Micron Embedded DRAM Macros," Ph.D. Dissertation, University of Vermont, Burlington, May 2001.Google Scholar
  8. 8.
    N. Watanabe, F. Morishita, Y. Taito, A. Yamazaki, T. Tanizaki, K. Dosaka, Y. Morooka, F. Igaue, K. Furue, Y. Nagura, T. Komoike, T. Morihara, A. Hachisuka, K. Arimoto, and H. Ozaki, “An Embedded DRAM Hybrid Macro with Auto Signal Management and Enhanced on Chip Tester," IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2001, pp. 388–389, 469.Google Scholar
  9. 9.
    R. Matick, et al., “Logic-based eDRAM: Origins and rationale for use", IBM Jour. Res & Dev. Vol. 49, No 1, January 2005, pp. 145–165.CrossRefGoogle Scholar
  10. 10.
    E. Cohen, et al., “A 64B CPU Pair: Dual and Single-Processor Chips", 2005 ISSCC Dig. Tech. Papers, 2005, pp. 106–107.Google Scholar
  11. 11.
    S. Naffziger, et al., “The implementation of a 2-core Multi-Threaded Itanium-Family Processor", 2005 ISSCC Dig. Tech. Papers, 2005, pp. 182–183.Google Scholar
  12. 12.
    R. H. Dennard, “Field Effect Transistor Memory," U.S. Patent 3,387,286, June 4, 1968.Google Scholar
  13. 13.
    T. Kirihata, P. Parries, D. Hanson, H. Kim, J. Golz, G. Fredeman, R. Rajeevakumar, J. Griesmer, N. Robson, A. Cestero, M. Wordeman, and S. Iyer, “An 800 MHz Embedded DRAM with a Concurrent Refresh Mode," Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), 2004, Digest of Technical Papers, 1, 2004, pp. 206–523.Google Scholar
  14. 14.
    M. Kumar, M. D. Steigerwalt, B. L. Walsh, T. L. Doney, D. Wildrick, K. A. Bard, D. M. Dobuzinsky, P. A. McFarland, C. E. Schiller, B. Messenger, S. E. Rathmill, A. R. Gasasira, P. C. Parries, S. S. Iyer, S. E. Chaloux, and H. L. Ho, “A Simple and High-Performance 130 nm SOI EDRAM Technology Using Floating-Body Pass-Gate Transistor in Trench-Capacitor Cell for System-on-a-Chip (SoC) Applications,“ Proceedings of the IEEE International Electron Devices Meeting (IEDM), 2003, Technical Digest, 2003, pp. 17.4.1–17.4.4.Google Scholar
  15. 15.
    E. B. Eichelberger and T. W. Williams, “A Logic Design Structure for LSI Testability," J. Design Automat. Fault- Tolerant Comput. 2, May 1978, 165–178.Google Scholar
  16. 16.
    J. Dreibelbis, J. Barth, H. Kalter, and R. Kho, “Built-In Self Test for Embedded DRAM," Proceedings of the IEEE North Atlantic Test Workshop, West Greenwich, RI, 1997, pp. 19–27.Google Scholar
  17. 17.
    R. McConnell, U. Moller, and D. Richter, “How We Test Siemens’ Embedded DRAM Cores," Proceedings of the International Test Conference, 1998, pp. 1120–1125.Google Scholar
  18. 18.
    R. Aitken, “On-Chip Versus Off-Chip Test: An Artificial Dichotomy," Proceedings of the International Test Conference, 1998, p. 1146.Google Scholar
  19. 19.
    J. Dreibelbis, J. Barth, Jr., R. Kho, and T. Kalter, “An ASIC Library Granular DRAM Macro with Built-In Self Test," IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 1998, pp. 74–75.Google Scholar
  20. 20.
    H. A. Bonges III, R. D. Adams, A. J. Allen, R. Flaker, K. S. Gray, E. L. Hedberg, W. T. Holman, G. M. Lattimore, D. A. Lavalette, K. Y. T. Nguyen, and A. L. Roberts, “A 576 K 3.5 ns Access BiCMOS ECL Static Ram with Array Built-in Self Test," IEEE J. Solid-State Circuits 27, No. 4, April 1992, 649–656.CrossRefGoogle Scholar
  21. 21.
    P. Jakobsen, J. Dreibelbis, G. Pomichter, D. Anand, J. Barth, M. Nelms, J. Leach, and G. Belansek, “Embedded DRAM Built In Self Test and Methodology for Test Insertion," Proceedings of the International Test Conference, 2001, pp. 975–984.Google Scholar
  22. 22.
    J. Barth, et al., “A 300 MHz multi-banked DRAM Macro featuring GND Sense, bit-line twisting and direct reference cell write," IEEE International Solid-State Circuits Conference, vol. XLV, February 2002, pp. 156–157.Google Scholar
  23. 23.
    J. Barth, et al., “A 500 MHz Multi-Banked Compilable DRAM Macro with Direct Write and Programmable Pipeline", 2004 ISSCC Dig. Tech. Papers, 2004, pp. 204–205.Google Scholar
  24. 24.
    Y. Taito, et al., “A High Density Memory for SoC with a 143 MHz SRAM Interface Using Sense- Synchronized- Read/Write", IEEE International Solid-State Circuits Conference, vol. XLVI, February 2003, pp. 306–307.Google Scholar
  25. 25.
    H. Pilo, et al., “A 5.6 ns Random Cycle 144 Mb DRAM with 1.4 Gb/s/pin and DDR3-SRAM Interface", IEEE International Solid-State Circuits Conference, vol. XLVI, February 2003, pp. 308-309.Google Scholar
  26. 26.
    M. Ouellette, et al., “On-chip repair and ATE-independent fusing methodology", IEEE International Test Conference Proceedings, October 2002, pp. 178–186.Google Scholar
  27. 27.
    S. Iyer, et al., “Embedded DRAM: Technology Platform for Blue Gene/L chip", IBM Jour. Res & Dev. Vol. 49 NO. 2/3 MARCH/MAY 2005, pp. 333–350.CrossRefGoogle Scholar
  28. 28.
    Top 500 Supercomputer Sites, “TOP500 List – November 2007," http://www.top500.org/ list/2007/11/100.
  29. 29.
    J. Clabes, et al., “Design and Implementation of the Power5 Micro Processor", 2004 ISSCC Dig. Tech. Papers, 2004, pp. 56–57.Google Scholar
  30. 30.
    G. Wang, et al., “A 0.127 μm2 High Performance 65 nm SOI Based embedded DRAM for on-Processor Applications", 2006 IEDM, 2006.Google Scholar
  31. 31.
    D. Weiss, et al., “The on-chip 3-MB Subarray-based third-level cache on an Itanium microprocessor", 2002 ISSCC Dig. Tech. Papers, 2002, pp. 112–113.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John Barth
    • 1
  1. 1.IBMEssex Junction

Personalised recommendations