Quantum Statistical Theory


The pairons move with linear dispersion relations. The 2D system of the pairons undergoes a Bose–Einstein condensation at the critical temperature \(T_{c}\), \(k_{B}T_{c}=1.24\,\hbar v_{F}n^{1/2}\), where \(n\) is the pairon density and \(v_{F}\) the Fermi speed. The superconducting transition is a phase change of second order.


Fermi Surface Einstein Condensation Molar Heat Capacity Fermi Velocity Linear Dispersion Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Fujita, J. Supercond. 4, 297 (1991).Google Scholar
  2. 2.
    S. Fujita, J. Supercond. 5, 83 (1992).Google Scholar
  3. 3.
    S. Fujita and S. Watanabe, J. Supercond. 5, 219 (1992).Google Scholar
  4. 4.
    S. Fujita and S. Watanabe, J. Supercond. 6, 75 (1993).Google Scholar
  5. 5.
    S. Fujita and S. Godoy, J. Supercond. 6, 373 (1993).Google Scholar
  6. 6.
    L. N. Cooper, Phys. Rev. 104, 1189 (1956).Google Scholar
  7. 7.
    J. R. Schrieffer, Theory of Superconductivity (Benjamin, New York, 1964).MATHGoogle Scholar
  8. 8.
    J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).Google Scholar
  9. 9.
    P. C. Hohenberg, Phys. Rev. 158, 383 (1967).Google Scholar
  10. 10.
    F. London, Superfluids, I and II (Dover, New York, 1964).Google Scholar
  11. 11.
    A. Lanzara, et al., Nature 412, 510 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Dept. PhysicsState University of New YorkBuffaloUSA
  2. 2.National Center for University Entrance ExaminationTokyoJapan
  3. 3.Depto. FísicaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations