High Temperature Superconductors


Cuprate superconductors have layered structures containing the copper planes (CuO\(_{2}\)). The electric conduction occurs in the copper plane. The longitudinal optical phonon exchange generates positively \(and\) negatively charged pairons, both of which move with linear dispersion relations. The system of the pairons undergoes a Bose–Einstein condensation at the critical temperature \(T_{c}, k_{B} T_{c} = 1.24\, \hbar\upsilon_{F} n^{1/2 }\), where \(n\) is the pairon density and \(\upsilon_{F}\) the Fermi speed. The phase change is of the third order.


Wave Packet Fermi Surface Quantum Tunneling Cuprate Superconductor Linear Dispersion Relation 


  1. 1.
    J. G. Bednorz and K. A. Müller, Z. Phys. B. Cond. Matt. 64, 189 (1986).Google Scholar
  2. 2.
    J. W. Halley, ed., Theory of High-Temperature Superconductivity (Addison-Wesley, Redwood City, CA, 1988).Google Scholar
  3. 3.
    S. Lundquist, et al., eds., Towards the Theoretical Understanding of High-T Superconductivity, Vol. 14 (World Scientific, Singapore, 1988).Google Scholar
  4. 4.
    S. A. Wolf and D. M. Ginsberg, eds., Physical Properties of High-Temperature Superconductors (World Scientific, Singapore, 1989)-(series).Google Scholar
  5. 5.
    W. Z. Kresin, Novel Superconductivity (Plenum, New York, 1989).Google Scholar
  6. 6.
    K. Kitazawa and T. Ishiguro, eds., Advances in Superconductivity (Springer, Tokyo, 1989).Google Scholar
  7. 7.
    P. W. Anderson, Theory of Superconductivity in High-\(T_{c}\) Cuprates (Princeton, U.P., Princeton, 1997).Google Scholar
  8. 8.
    J. R. Waldram, Superconductivity of Metals and Cuprates (Institute of Physics, Bristol, 1996).Google Scholar
  9. 9.
    S. Fujita and D. L. Morabito, Mod. Phys. Lett. B 12, 1061 (1998).Google Scholar
  10. 10.
    S. Fujita and S. Watanabe, J. Supercond. 5, 219 (1992).Google Scholar
  11. 11.
    M. K. Wu, et al., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
  12. 12.
    See, e.g., Ginsberg’s overview, Ref. 4, pp. 1–38. 8.Google Scholar
  13. 13.
    D. E. Farrell, et al., Phys. Rev. B 42, 6758 (1990).Google Scholar
  14. 14.
    S. Godoy and S. Fujita, J. Eng. Sci. 29, 1201 (1991).Google Scholar
  15. 15.
    J. H. Kang, R. T. Kampwirth and K. E. Gray, Appl. Phys. Lett. 52, 2080 (1988).Google Scholar
  16. 16.
    M. J. Naughton, et al., Phys. Rev. B 38, 9280 (1988).Google Scholar
  17. 17.
    Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz and F. Lichtenberg, Nature 372, 532 (1994).Google Scholar
  18. 18.
    L. Onsager, Phil. Mag. 43, 1006 (1952).Google Scholar
  19. 19.
    J. Wosnitza, et al., Phys. Rev. Lett. 67, 263 (1991).Google Scholar
  20. 20.
    J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).Google Scholar
  21. 21.
    S. Fujita and D. L. Morabito, Int. J. Mod. Phys. B 21, 2139 (1998).Google Scholar
  22. 22.
    R. A. Fisher, J. E. Gordon and N. E. Phillips, J. Supercond. 1, 231 (1988).Google Scholar
  23. 23.
    J. W. Loram, K. A. Mirza, J. R. Cooper and W. Y. Liang, J. Supercond. 7, 347 (1994).Google Scholar
  24. 24.
    T. Ekino, et al., Physica C 218, 387 (1993).Google Scholar
  25. 25.
    P. J. M. van Bentum, et al., Phys. Rev. B 36, 843 (1987).Google Scholar
  26. 26.
    F. Frangi, et al., Sol. State Commun. 81, 599 (1992).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsState University of New YorkBuffaloUSA
  2. 2.National Center for UniversityTokyoJapan
  3. 3.Department of FísicaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations