Skip to main content

The Molecular Landscape of Spermatogonial Stem Cell Renewal, Meiotic Sex Chromosome Inactivation, and Spermatic Head Shaping

  • Chapter
  • First Online:
Book cover Reproductive Endocrinology

Spermatogenesis is a hormonally regulated process involving three sequential events: (1) the mitotic amplification of the spermatogonial cell progeny, (2) the completion of meiosis by the spermatocyte progeny, and (3) spermiogenesis, the gradual morphogenesis of the spermatid progeny. Mitosis, meiosis and spermiogenesis coexist in the seminiferous epithelium in association with a post-mitotic stable population of somatic Sertoli cells. Cell components of each spermatogonial, spermatocyte, and spermatid cell progeny remain connected by intercellular cytoplasmic bridges. Intercellular bridges are disrupted upon completion of spermiogenesis leading to the release in the seminiferous tubular lumen of single mature spermatids transported to the epididymal duct for acquisition of fertilizing activity. Several key cell cycle regulators have been shown to operate during the mitotic amplification of the spermatogonial progeny. During meiotic prophase, autosomal bivalents are engaged in prominent ribosomal RNA and non-ribosomal RNA transcriptional activity, in contrast with the transcriptional silencing of the condensed XY chromosomes. An autosomal bivalent is a synapsed (conjoined) chromosomal pair, excluding the sex chromosomes X and Y, observed during meiotic prophase I. Each member of a chromosomal bivalent (autosomes and X-Y) consists of two sister chromatids that will disjoin (separate) upon completion of meiosis to produce a haploid genome (spermatid). During spermiogenesis, gradual genetic inactivation of the spermatid genome correlates with spermatid head shaping. The acrosome-acroplaxome-manchette complex is emerging as a significant player in spermatid head shaping as well as in the assembly of the sperm head–tail coupling apparatus and the development of the outer dense fiber-axoneme-containing sperm tail. The acroplaxome is a cytoskeletal plate bordered by a desmosome-like marginal ring fastening the descending recess of the acrosomal sac to the nuclear envelope of the spermatid. The manchette is a transient microtubular-containing structure developed beneath the acroplaxome and encircling the elongating spermatid nucleus. This chapter is restricted to recent developments in the bioregulation of the spermatogonial stem cell progeny, the process of transcriptional inactivation of the XY bivalent, and the steps leading to spermatid head shaping. These are three relevant aspects that, when disrupted, can lead to male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kierszenbaum AL. Spermatogenesis. In: Kierszenbaum AL. Histology and Cell Biology: An Introduction to Pathology, Second edition. Philadelphia:Mosby, 2007:569–96.

    Google Scholar 

  2. Meng X, Lindahl M, Hyvönen ME, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science2000; 287:1489–93.

    Article  PubMed  CAS  Google Scholar 

  3. Jijiwa M, Kawai K, Fukihara J, et al. GDNF-mediated signaling via RET tyrosine 1062 is essential for maintenance of spermatogonial stem cells. Genes Cells 2008; 13:365–74.

    Article  PubMed  CAS  Google Scholar 

  4. Costoya JA. Functional analysis of the role of POK transcriptional repressor. Brief Funct Genomic Proteomic 2007; 6:8–18.

    Article  PubMed  CAS  Google Scholar 

  5. Tres LL, Kierszenbaum AL. The ADAM-integrin-tetraspanin complex in fetal and postnatal testicular cords. Birth Defects Res C Embryo Today 2005; 75:130–41.

    Article  PubMed  CAS  Google Scholar 

  6. Beumer TL, Roepers-Gajadien HL, Gademan IS, et al. Involvement of the D-type cyclins in germ cell proliferation and differentiation in the mouse. Biol Reprod 2000; 63:1893–98.

    Article  PubMed  CAS  Google Scholar 

  7. Costoya JA, Hobbs RM, Barna M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 2004; 36:653–9.

    Article  PubMed  CAS  Google Scholar 

  8. Buaas FW, Kirsh AL, Sharma M, et al. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 2004; 36:647–52.

    Article  PubMed  CAS  Google Scholar 

  9. Filipponi D, Hobbs RM, Ottolenghi S, et al. Repression of kit expression by Plzf in germ cells. Mol Cell Biol 2007; 27: 6770–81.

    Article  PubMed  CAS  Google Scholar 

  10. Kierszenbaum AL. Mammalian spermatogenesis in vivo and in vitro: a partnership of spermatogenic and somatic cell lineages. Endocr Rev 1994; 15:116–34.

    PubMed  CAS  Google Scholar 

  11. Marh J, Tres LL, Yamazaki Y, et al. Mouse round spermatids developed in vitro from preexisting spermatocytes can produce normal offspring by nuclear injection into in vivo-developed mature oocytes. Biol Reprod 2003; 69:169–76.

    Article  PubMed  CAS  Google Scholar 

  12. Borde V. The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Res 2007; 15:551–63.

    Article  PubMed  CAS  Google Scholar 

  13. Page SL, Hawley RS. The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 2004; 20:525–58.

    Article  PubMed  CAS  Google Scholar 

  14. Tres LL. XY chromosomal bivalent: nucleolar attraction. Mol Reprod Dev 2005; 72:1–6.

    Article  PubMed  CAS  Google Scholar 

  15. Namekawa SH, Park PJ, Zhang LF, et al. Postmeiotic sex chromatin in the male germline of mice. Curr Biol 2006; 16:660–7.

    Article  PubMed  CAS  Google Scholar 

  16. Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 2003; 4: 497–508.

    CAS  Google Scholar 

  17. Mahadevaiah SK, Turner JM, Baudat F, et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 2001; 27:271–6.

    Article  PubMed  CAS  Google Scholar 

  18. Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, et al. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 2005; 37:41–7.

    PubMed  CAS  Google Scholar 

  19. Turner JM, Aprelikova O, Xu X, et al. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol 2004; 14:2135–42.

    Article  PubMed  CAS  Google Scholar 

  20. Turner JMA. Meiotic sex chromosome inactivation. Development 2007; 134:1823–31.

    Article  PubMed  CAS  Google Scholar 

  21. Rivkin E, Tres LL, Kierszenbaum AL. Genomic origin, processing and developmental expression of testicular outer dense fiber 2 (ODF2) transcripts and a novel nucleolar localization of ODF2 protein. Mol Reprod Dev 2008; 75:1591–602.

    Google Scholar 

  22. Salmon NA, Reijo Pera RA, Xu EY. A gene trap knockout of the abundant sperm tail protein, outer dense fiber 2, results in preimplantation lethality. Genesis 2006; 44:515–22.

    Article  CAS  Google Scholar 

  23. Kierszenbaum AL, Tres LL. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol 2004; 67:271–84.

    Article  PubMed  CAS  Google Scholar 

  24. Kierszenbaum AL, Rivkin E, Tres LL. Molecular biology of sperm head shaping. Soc Reprod Fertil Suppl 2007; 65:33–43.

    PubMed  CAS  Google Scholar 

  25. Kierszenbaum AL, Rivkin E, Tres LL. Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 2003; 14: 4628–40.

    Article  PubMed  CAS  Google Scholar 

  26. Kierszenbaum AL. Intramanchette transport (IMT): managing the making of the spermatid head, centrosome, and tail. Mol Reprod Dev 2002; 63:1–4.

    Article  PubMed  CAS  Google Scholar 

  27. Touré A, Szot M, Mahadevaiah SK, et al. A new deletion of the mouse Y chromosome long arm associated with the loss of Ssty expression, abnormal sperm development and sterility. Genetics 2004; 166:901–12.

    Article  PubMed  Google Scholar 

  28. Kang-Decker N, Mantchev GT, Juneja SC, et al. Lack of acrosome formation in Hrb-deficient mice. Science 2001; 294:1531–3.

    Article  PubMed  CAS  Google Scholar 

  29. Yao R, Ito C, Natsume Y, et al. Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A 2002; 99:11211–6.

    Article  CAS  Google Scholar 

  30. Yang WX, Sperry AO. C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 2003; 69:1719–29.

    Article  PubMed  CAS  Google Scholar 

  31. Langford GM. Myosin-V, a versatile motor for short-range vesicle transport. Traffic 2002; 3:859–65.

    Article  PubMed  CAS  Google Scholar 

  32. Seabra MC, Mules EH, Hume AN. Rab GTPases, intracellular traffic and disease. Trends Mol Med 2002; 8:23–30.

    Article  PubMed  CAS  Google Scholar 

  33. Kierszenbaum AL, Rivkin E, Tres LL. The actin-based motor myosin Va is a component of the acroplaxome, an acrosome-nuclear envelope junctional plate, and of manchette-associated vesicles. Cytogenet Genome Res 2003; 103:337–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura L. Tres .

Editor information

Editors and Affiliations

ATR:

DNA repair protein, member of the PI3-kinase-like family

Brca1:

breast cancer 1 gene

c-kit:

cellular homolog of the feline sarcoma viral oncogene v-kit

cyclin D1 and D2:

cell cycle-regulatory genes

DSB:

double-strand breaks

FSH:

follicle stimulating hormone

GDNF:

glial cell line-derived neurotrophic factor

GOPC:

Golgi-associated PDZ and coiled-coil motif containing

H2AFY:

H2A histone family, member Y (also known as histone macroH2A1)

H2AX:

variant of the histone H2a

Hrb:

Asn-Pro-Phe (NPF) motif-containing protein (also called Rab or hRip)

hRip:

human immunodeficiency virus Rev-interacting protein.

KIFC:

kinesin family member C

MANO:

meiotic autosomal nucleolar organization

MCSI:

meiotic sex chromosome inactivation

Mre11:

meiotic recombination 11 protein

Nbs1:

Nijmegen breakage syndrome 1

ODF2:

Outer dense fiber 2

Plzf:

promyelocytic leukemia zinc-finger, a transcriptional repressor encoded by the Zfp145 gene

POK:

Poxviruses and zinc-finger (POZ) and Krüppel family of transcription repressors

POZ:

Poxviruses and zinc-finger

Rab:

member of the Ras superfamily of monomeric G proteins

Rad3:

a DNA helicase repair protein

Rad50:

Mre11-interacting protein with binding affinity to double stranded DNA.

RET:

protooncogene tyrosine kinase receptor that binds members of the GDNF family

Ssty 1 and Ssty 2:

Y-linked spermiogenesis specific transcript

Zfp145:

zinc finger protein 145 gene

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tres, L.L., Kierszenbaum, A.L. (2009). The Molecular Landscape of Spermatogonial Stem Cell Renewal, Meiotic Sex Chromosome Inactivation, and Spermatic Head Shaping. In: Chedrese, P. (eds) Reproductive Endocrinology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88186-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88186-7_27

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-88185-0

  • Online ISBN: 978-0-387-88186-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics