Skip to main content

Ovarian Endocrine Activity: Role of Follistatin, Activin, and Inhibin

  • Chapter
  • First Online:
Reproductive Endocrinology

The first evidence of a testicular non-steroidal factor able to regulate the activity of the pituitary gland was reported by Roy McCullagh in 1932 [1]. He observed that the administration of an aqueous testicular preparation to castrated rats was able to restore the physiological characteristics of pituitary cells that had been altered after castration. This bioactive factor was called “inhibin.” When FSH and LH were purified, standards were available and specific radioimmunoassays were developed to determine their levels in biological fluids. The application of these methodologies to patients with gonadal dysfunctions confirmed the existence of a gonadal regulatory mechanism specific for FSH secretion. In adult males with damaged seminiferous tubules epithelium, a marked increase of FSH levels, concomitantly with normal testosterone and LH levels, was reported [2]. Similar observations were described in pre-menopausal women, with elevated serum FSH levels and normal estradiol, during the follicular phase of the menstrual cycle [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCullagh D. Dual endocrine activity of the testes. Science 1932; 76:19–20.

    Article  PubMed  CAS  Google Scholar 

  2. de Kretser D, Burger H, Fortune D, et al. Hormonal, histological and chromosomal studies in adult males with testicular disorders. J Clin Endocrinol Metab 1972; 35:392–401.

    Article  PubMed  Google Scholar 

  3. Sherman B, West J, Korenman S. The menopausal transition: analysis of LH, FSH, estradiol and progesterone concentrations during menstrual cycles of older women. J Clin Endocrinol Metab 1976; 42:629–36.

    Article  PubMed  CAS  Google Scholar 

  4. Robertson D, Foulds L, Leversha L, et al. Isolation of inhibin from bovine follicular fluid. Biochem Biophys Res Commun 1985; 126:220–6.

    Article  PubMed  CAS  Google Scholar 

  5. Miyamoto K, Hasegawa Y, Fukuda M et al. Isolation of porcine follicular fluid inhibin of 32 K daltons. Biochem Biophys Res Commun 1985; 129:396–403.

    Article  PubMed  CAS  Google Scholar 

  6. Ling N, Ying S, Ueno N, et al. Isolation and partial characterization of a Mr 32,000 protein with inhibin activity from porcine follicular fluid. Proc Natl Acad Sci U S A 1985; 82:7217–21.

    Article  PubMed  CAS  Google Scholar 

  7. Mason A, Hayflick J, Ling N, et al. Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforming growth factor-beta. Nature 1985; 318:659–63.

    Article  PubMed  CAS  Google Scholar 

  8. Burger H. Clinical review 46: Clinical utility of inhibin measurements. J Clin Endocrinol Metab 1993; 76:1391–6.

    Article  PubMed  CAS  Google Scholar 

  9. Knight P, Glister C. Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction 2001; 121: 503–12.

    Article  PubMed  CAS  Google Scholar 

  10. Knight P, Beard A, Wrathall J, et al. Evidence that the bovine ovary secretes large amounts of monomeric inhibin alpha subunit and its isolation from bovine follicular fluid. J Mol Endocrinol 1989; 2:189–200.

    Article  PubMed  CAS  Google Scholar 

  11. Halvorson L, de Cherney A. Inhibin, activin, and follistatin in reproductive medicine. Fertil Steril 1996; 65:459–69.

    PubMed  CAS  Google Scholar 

  12. Woodruff T. Regulation of cellular and system function by activin. Biochem Pharmacol 1998; 1:953–63.

    Article  Google Scholar 

  13. Pangas S, Woodruff T. Activin signal transduction pathways. Trends Endocrinol Metab 2000; 11:309–14.

    Article  PubMed  CAS  Google Scholar 

  14. Welt C, Crowley W. Activin: an endocrine or paracrine agent? Eur J Endocrinol 1998; 139:469–71.

    Article  PubMed  CAS  Google Scholar 

  15. Mitrani E, Ziv T, Thomsen G, et al. Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 1990; 63:495–501.

    Article  PubMed  CAS  Google Scholar 

  16. Ueno N, Ling N, Ying S, et al. Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc Natl Acad Sci U S A 1987; 84:8282–6.

    Article  PubMed  CAS  Google Scholar 

  17. Nakamura T, Takio K, Eto Y, et al. Activin-binding protein from rat ovary is follistatin. Science 1990; 16:836–8.

    Article  Google Scholar 

  18. Kogawa K, Ogawa K, Hayashi Y, et al. Immunohistochemical localization of follistatin in rat tissues. Endocrinol Jpn 1991; 38:383–91.

    Article  PubMed  CAS  Google Scholar 

  19. Gospodarowicz D, Lau K. Pituitary follicular cells secrete both vascular endothelial growth factor and follistatin. Biochem Biophys Res Commun 1989; 165:292–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kaiser U, Lee B, Carroll R, et al. Follistatin gene expression in the pituitary: localization in gonadotropes and folliculostellate cells in diestrous rats. Endocrinology 1992; 130:3048–56.

    Article  PubMed  CAS  Google Scholar 

  21. Barton D, Yang-Feng T, Mason A, et al. Mapping of genes for inhibin subunits alpha, beta A, and beta B on human and mouse chromosomes and studies of jsd mice. Genomics 1989; 5:91–9.

    Article  PubMed  CAS  Google Scholar 

  22. Farnworth P, Robertson D, de Kretser D, et al. Effects of 31 kDa bovine inhibin on FSH and LH in rat pituitary cells in vitro: antagonism of gonadotrophin-releasing hormone agonists. J Endocrinol 1988; 119:233–41.

    Article  PubMed  CAS  Google Scholar 

  23. Vale W, Rivier C, Hsueh A, et al. Chemical and biological characterization of the inhibin family of protein hormones. Recent Prog Horm Res 1988; 44:1–34.

    PubMed  CAS  Google Scholar 

  24. Attardi B, Keeping H, Winters S, et al. Effect of inhibin from primate Sertoli cells and GnRH on gonadotropin subunit mRNA in rat pituitary cell cultures. Mol Endocrinol 1989; 3:1236–42.

    Article  PubMed  CAS  Google Scholar 

  25. Carroll R, Corrigan A, Gharib S, et al. Inhibin, activin, and follistatin: regulation of follicle-stimulating hormone messenger ribonucleic acid levels. Mol Endocrinol 1989; 3:1969–76.

    Article  PubMed  CAS  Google Scholar 

  26. Xu J, McKeehan K, Matsuzaki K, et al. Inhibin antagonizes inhibition of liver cell growth by activin by a dominant-negative mechanism. J Biol Chem 1995; 270:6308–13.

    Article  PubMed  CAS  Google Scholar 

  27. Steinberger A. Inhibin production by Sertoli cells in culture. J Reprod Fertil Suppl 1979; 26:31–45.

    PubMed  CAS  Google Scholar 

  28. Bicsak T, Tucker E, Cappel S, et al. Hormonal regulation of granulosa cell inhibin biosynthesis. Endocrinology 1986; 119: 2711–9.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Z, Carson R, Herington A, et al. Follicle-stimulating hormone and somatomedin-C stimulate inhibin production by rat granulosa cells in vitro. Endocrinology 1987; 120:1633–8.

    Article  PubMed  CAS  Google Scholar 

  30. Meunier H, Rivier C, Evans R, et al. Gonadal and extragonadal expression of inhibin and subunits in various tissues predicts diverse functions. Proc Nat Acad Science USA 1988; 85:247–51.

    Article  CAS  Google Scholar 

  31. Roberts V, Meunier H, Vaughan J, et al. Production and regulation of inhibin subunits in pituitary gonadotropes. Endocrinology 1989; 124:552–4.

    Article  PubMed  CAS  Google Scholar 

  32. Tsonis C, Hillier S, Baird D. Production of inhibin bioactivity by human granulosa-lutein cells: stimulation by LH and testosterone in vitro. J Endocrinol 1987; 112:R11–4.

    Article  PubMed  CAS  Google Scholar 

  33. McLachlan R, Robertson D, Burger H, et al. The radioimmunoassay of bovine and human follicular fluid and serum inhibin. Mol Cell Endocrinol 1986; 46:175–85.

    Article  PubMed  CAS  Google Scholar 

  34. Burger H, McLachlan R, Bangah M, et al. Serum inhibin concentrations rise throughout normal male and female puberty. J Clin Endocrinol Metab 1988; 67:689–94.

    Article  PubMed  CAS  Google Scholar 

  35. Muttukrishna S, Fowler P, Groome N, et al. Serum concentrations of dimeric inhibin during the spontaneous human menstrual cycle and after treatment with exogenous gonadotrophin. Hum Reprod 1994; 9:1634–42.

    PubMed  CAS  Google Scholar 

  36. Groome N, Illingworth P, O’Brien M, et al. Detection of dimeric inhibin throughout the human menstrual cycle by two-site enzyme immunoassay. Clin Endocrinol (Oxf) 1994; 40:717–23.

    Article  CAS  Google Scholar 

  37. Groome N, Illingworth P, O’Brien M, et al. Measurement of dimeric inhibin B troughout the human menstrual cycle. J Clin Endocrinol Metab 1996; 81:1401–5.

    Article  PubMed  CAS  Google Scholar 

  38. Groome N, O’Brien M. Immunoassays for inhibin and its subunits. Further applications of the synthetic peptide approach. J Immunol Methods 1993; 165:167–76.

    Article  PubMed  CAS  Google Scholar 

  39. Bergada I, Rojas G, Ropelato G, et al. Sexual dimorphism in circulating monomeric and dimeric inhibins in normal boys and girls from birth to puberty. Clin Endocrinol 1999; 51:455–60.

    Article  CAS  Google Scholar 

  40. Sehested A, Juul A, Andersson A, et al. Serum inhibin A and B in healthy prepubertal, pubertal and adolescent girls and adult women: relation to age, stage of puberty, menstrual cycle, follicle-stimulating hormone, luteinizing hormone and estradiol levels. J Clin Endo Metabol 2000; 85:1634–40.

    Article  CAS  Google Scholar 

  41. Martins da Silva S, Bayne R, Cambray N, et al. Expression of activin subunits and receptors in the developing human ovary: activin A promotes germ cell survival and proliferation before primordial follicle formation. Dev Biol 2004; 266:334–45.

    Article  Google Scholar 

  42. Bergada I, Ballerini G, Ayuso S, et al. High serum concentrations of dimeric inhibins A and B in normal newborn girls. Fertil Steril 2002; 77:363–5.

    Article  PubMed  Google Scholar 

  43. Bergada I, Milani C, Bedecarrás P, et al. Time course of the serum gonadotropin surge, inhibins, and anti-Müllerian hormone in normal newborn males during the first month of life. J Clin Endocrinol Metab 2006; 91:4092–8.

    Article  PubMed  CAS  Google Scholar 

  44. Peters H, Byskov A, Grinsted J. Follicular growth in fetal and prepubertal ovaries of humans and other primates. Clin Endocrinol Metab 1978; 7:469–85.

    Article  PubMed  CAS  Google Scholar 

  45. Polhemus D. Ovarian maturation and cyst formation in children. Pediatrics 1953; 588–94.

    Google Scholar 

  46. Winter J, Faiman C. Pituitary-gonadal relations in female children and adolescents. Pediatr Res 1973; 7:948–53.

    Article  PubMed  CAS  Google Scholar 

  47. Marshall W, Tanner J. Variations in pattern of pubertal changes in girls. Arch Dis Child 1969; 44:291–303.

    Article  PubMed  CAS  Google Scholar 

  48. Chada M, Průsa R, Bronský J, et al. Inhibin B, follicle stimulating hormone, luteinizing hormone, and estradiol and their relationship to the regulation of follicle development in girls during childhood and puberty. Physiol Res 2003; 52:341–6.

    PubMed  CAS  Google Scholar 

  49. Groome N, Illingworth P, O’Brien M, et al. Quantification of Inhibin Pro-αC-containing forms in the human serum by a new ultrasensitive two-site enzyme-linked immunoabsorbent assay. J Clin Endocrinol Metab 1995; 80:2926–32.

    Article  PubMed  CAS  Google Scholar 

  50. Findlay J, Russell D, Doughton B, et al. Effect of active immunization against the aminoterminal peptide (alpha-n) of the alpha-43-kda subunit of inhibin (alpha-43) on fertility of ewes. Reprod Fertil Dev 1994; 6:265–7.

    Article  PubMed  CAS  Google Scholar 

  51. Schneyer A, Sluss P, Whitcomb R, et al. Precursors of α-inhibin modulate FSH receptor binding and biological activity. Endocrinology 1991; 129:1987–99.

    Article  PubMed  CAS  Google Scholar 

  52. Mason A, Schwall R, Renz M, et al. Human inhibin and activin: structure and recombinant expression in mammalian cells. In: Burger H, de Kretser D, Findlay J, editors. Inhibin: non-steroidal regulation and follicle stimulating hormone secretion. New York: Raven Press, 1987:89–103.

    Google Scholar 

  53. Suzuki T, Miyamoto K, Hasegawa Y, et al. Regulation of inhibin production by rat granulosa cells. Mol Cell Endocrinol 1987; 54:185–95.

    Article  PubMed  CAS  Google Scholar 

  54. LaPolt P, Piquette G, Soto D, et al. Regulation of inhibin subunit messenger ribonucleic acid levels by gonadotropins, growth factors, and gonadotropin-releasing hormone in cultured rat granulosa cells. Endocrinology 1990; 127:823–31.

    Article  PubMed  CAS  Google Scholar 

  55. Fahy P, Wilson C, Beard A, et al. Changes in inhibin-A (α-βA dimer) and total α-inhibin in the peripheral circulation and ovaries of rats after gonadotrophin-induced follicular development and during the normal oestrous cycle. J Endocrinol 1995; 147:271–83.

    Article  PubMed  CAS  Google Scholar 

  56. Woodruff T, Besecke L, Groome N, et al. Inhibin A and inhibin B are inversely correlated to follicle-stimulating hormone, yet are discordant during the follicular phase of the rat estrous cycle, and inhibin A is expressed in a sexually dimorphic manner. Endocrinology 1996; 137:5463–7.

    Article  PubMed  CAS  Google Scholar 

  57. Lanuza G, Groome N, Barañao L, et al. Dimeric inhibin A and B production are differentially regulated by hormones and local factors in rat granulosa cells. Endocrinology 1999; 140: 2549–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Campo .

Editor information

Editors and Affiliations

AMH:

anti-Müllerian hormone, also termed MIS

FRP:

FSH releasing proteins

FSH:

follicle stimulating hormone

GnRH:

gonadotropin releasing hormone

hCG:

human chorionic gonadotropin

IGF-1:

insulin like growth factor-1

IVF:

in vitro fertilization

LH:

luteinizing hormone

MIS:

müllerian inhibiting substance

mRNA:

messenger RNA

RIA:

radioimmunoassay

RNA:

ribonucleic acid

TGF:

transforming growth factor

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Campo, S., Loreti, N., Andreone, L. (2009). Ovarian Endocrine Activity: Role of Follistatin, Activin, and Inhibin. In: Chedrese, P. (eds) Reproductive Endocrinology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88186-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-88186-7_22

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-88185-0

  • Online ISBN: 978-0-387-88186-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics