Collection, Processing, and Analysis of Three-Dimensional EBSD Data Sets

  • Michael A. Groeber
  • David J. Rowenhorst
  • Michael D. Uchic

Three-dimensional (3D) characterization methods are required to completely determine microstructural descriptors such as the true shape and size of features, the number of features, and the connectivity between these features. Experimental methods to characterize microstructure in 3D have undergone dramatic improvements in the past decade, and there now exists a host of methodologies that are capable of determining 3D microstructural information, ranging from counting individual atoms to imaging macro-scale volumes. The state of the art for this field has been reviewed recently in a Viewpoint Set for Scripta Materialia (Spanos 2006).


Mechanical Polishing Orientation Distribution Function Martensite Crystal Correlation Ratio EBSD Data 


  1. Barton NR, Dawson PR (2001) A methodology for determining average lattice orientation and its application to the characterization of grain substructure. Metall Trans A 32: 1967–1975Google Scholar
  2. Bhandari Y, Sarkar S, Groeber M, Uchic M, Dimiduk D, Ghosh S et al (2007) 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Comp Mater Sci 41:222–235CrossRefGoogle Scholar
  3. Brahme A, Alvi MH, Saylor D, Fridy J, Rollett AD et al (2006) 3D reconstruction of microstructure in a commercial purity aluminum. Scr Mater 55:75–80CrossRefGoogle Scholar
  4. Budai JD, Yang W, Larson BC, Tischler JZ, Liu W, Weiland H, Ice GE et al (2004) Three-dimensional micron-resolution x-ray laue diffraction measurement of thermal grain-evolution in aluminum. Mater Sci Forum 467–470: 1373–1378CrossRefGoogle Scholar
  5. Budai JD, Liu W, Tischler JZ, Pan ZW, Norton DP, Larson BC, Yang W, Ice GE et al (2008) Polychromatic x-ray micro- and nanodiffraction for spatially-resolved structural studies. Thin Solid Films 576:8013–8021CrossRefADSGoogle Scholar
  6. Feltham P (1957) Grain growth in metals. Acta Metall 5:97–105CrossRefGoogle Scholar
  7. Groeber MA, Haley B, Uchic MD, Ghosh S et al (2004) Microstructural characterization using 3-D orientation data collected by an automated FIB-EBSD system. In: Ghosh S, Castro J, Lee JK (eds) Proceedings of NUMIFORM 2004, AIP Publishers Melville, New YorkGoogle Scholar
  8. Groeber MA, Haley BK, Uchic MD, Dimiduk DM, Ghosh S et al (2006) 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater Charact 57:259–273CrossRefGoogle Scholar
  9. Groeber MA, Uchic MD, Dimiduk DM, Ghosh S et al (2008) A framework for automated analysis and simulation of polycrystalline microstructures, part 1: statistical characterization. Acta Mater 56:1257–1273CrossRefGoogle Scholar
  10. Hillert M (1965) On the theory of normal and abnormal grain growth. Acta Metall 13:227–238CrossRefGoogle Scholar
  11. Humphreys FJ (1999) Quantitative metallography by electron backscattered diffraction. J Microsc 195:170–185CrossRefPubMedGoogle Scholar
  12. Kenney JF, Keeping ES (1947) Mathematics of statistics. Van Nostrand, Princeton, NJMATHGoogle Scholar
  13. Kim C-S, Rollett AD, Rohrer GS et al (2006) Grain boundary planes: new dimensions in the grain boundary character distribution. Scr Mater 54:1005–1009CrossRefGoogle Scholar
  14. Kral MV, Mangan MA, Spanos G, Rosenberg RO et al (2000) Three-dimensional analysis of microstructures. Mater Charact 45:17–23CrossRefGoogle Scholar
  15. Kammer D, Mendoza R, Voorhees PW et al (2006) Cylindrical domain formation in topologically complex structures. Scr Mater 55:17–22CrossRefGoogle Scholar
  16. Lund AC, Voorhees PW (2002) The effects of elastic stress on coarsening in the Ni-Al system. Acta Mater 50:2085--2098CrossRefGoogle Scholar
  17. Lauridsen EM, Schmidt S, Nielsen SF, Margulies L, Poulsen HF, Juul Jensen D et al (2006) Non-destructive characterization of recrystallization kinetics using three-dimensional x-ray diffraction microscopy. Scr Mater 55:51–56CrossRefGoogle Scholar
  18. Lewis AC, Bingert JF, Rowenhorst DJ, Gupta A, Geltmacher AB, Spanos G et al (2006) Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel. Mater Sci Eng A 418:11–18CrossRefGoogle Scholar
  19. Li M, Ghosh S, Richmond O, Weiland H, Rouns TN et al (1999) Three dimensional characterization and modeling of particle reinforced metal matrix composites, part 1: quantitative description of microstructure morphology. Mater Sci Eng A A265:153–173Google Scholar
  20. Lienert U, Almer J, Jakobsen B, Pantleon W, Poulsen HF, Hennessey D, Xiao C, Suter RM et al (2007) 3-dimensional characterization of polycrystalline bulk materials using high-energy synchrotron radiation. Mater Sci Forum 539–543:2353–2358CrossRefGoogle Scholar
  21. Lorenson WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graphics 21:163–169CrossRefGoogle Scholar
  22. Louat NP (1974) On the theory of normal grain growth. Acta Metall 22:721–724CrossRefGoogle Scholar
  23. Ralph B, Kurzylowski KJ (1997) The philosophy of microscopic quantification. Mater Charact 38:217–227CrossRefGoogle Scholar
  24. Randle V, Hu Y, Rohrer GS, Kim C-S et al (2005) The distribution of misorientations and grain boundary planes in grain boundary engineered brass. Mater Sci Technol 21: 1287–1292CrossRefGoogle Scholar
  25. Randle V, Rohrer GS, Hu Y et al (2008a) Five-parameter grain boundary analysis of a titanium alloy before and after low-temperature annealing. Scr Mater 58:183–186CrossRefGoogle Scholar
  26. Randle V, Rohrer GS, Miller H, Coleman M, Owen G et al (2008b) Five-parameter grain boundary distribution of commercially grain boundary engineered nickel and copper. Acta Mater 56:2363–2373CrossRefGoogle Scholar
  27. Rowenhorst DJ, Gupta A, Feng CR, Spanos G et al (2006) 3D crystallographic and morphological analysis of coarse martensite: combining EBSD and serial sectioning. Scr Mater 55:11–16CrossRefGoogle Scholar
  28. Russ JC, DeHoff RT (1986) Practical stereology. Springer, New YorkGoogle Scholar
  29. Russ JC (1998) The Image processing handbook. CRC Press, Boca Raton, FLGoogle Scholar
  30. Saylor DM, Morawiec A, Cherry KW, Rogan FH, Rohrer GS, Mahadevan S, Casasent D et al (2001) Crystallographic distribution of grain boundaries in magnesium oxide. In: Gottstein G and Molodov DA (eds) Proceedings of the first joint international conference on grain growth. Springer Verlag, Aachen, Germany 449--454Google Scholar
  31. Saylor DM, El-Dasher BS, Rollett AD, Rohrer GS et al (2004a) Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater 52:3649–3655CrossRefGoogle Scholar
  32. Saylor DM, Fridy J, El-Dasher BS, Jung KY, Rollett AD et al (2004b) Statistically representative three-dimensional microstructures based on orthogonal observation sections. Metall Trans A 35A:1969–1979CrossRefGoogle Scholar
  33. Schmidt S, Nielsen SF, Gundlach C, Margulies L, Huang X, Juul Jensen D et al (2004) Watching the growth of bulk grains during recrystallization in deformed metals. Science 305: 229–232CrossRefPubMedADSGoogle Scholar
  34. Spanos G (2006) Foreword: scripta materialia viewpoint set on 3D characterization and analysis of materials. Scr Mater 55:3CrossRefGoogle Scholar
  35. Wall MA, Schwartz AJ, Nguyen L (2001) A high-resolution serial sectioning specimen preparation technique for application to electron backscatter diffraction. Ultramicroscopy 88:73–83CrossRefGoogle Scholar
  36. Zaafarani N, Raabe D, Singh RN, Zaefferer S et al (2006) Three-dimensional investigation of the texture and microtexture below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater 54:1863–1876CrossRefGoogle Scholar
  37. Zhang C, Suzuki A, Ishimaru T, Enomoto M et al (2004) Characterization of three-dimensional grain structure in polycrystalline iron by serial sectioning. Metall Trans A35A: 1927–1932Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael A. Groeber
    • 1
  • David J. Rowenhorst
    • 2
  • Michael D. Uchic
    • 1
  1. 1.Wright Patterson Air Force BaseDaytonUSA
  2. 2.The United States Naval Research Laboratory, Code 6355WashingtonUSA

Personalised recommendations