Advertisement

Three-Dimensional Orientation Microscopy by Serial Sectioning and EBSD-Based Orientation Mapping in a FIB-SEM

  • Stefan Zaefferer
  • Stuart I. Wright
Chapter

Conventional EBSD-based orientation microscopy is a 2-dimensional (2D) characterization method, which is applied to plane cuts through a sample. Statistical stereological techniques can be used to gain insight into the 3D aspects of microstructure, as in, e.g., Adams (1986), Adams et al.

Keywords

Serial Section Fiducial Marker Inverse Pole Figure Beam Shift Stage Tilt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams BL (1986) Description of the intercrystalline structure distribution in polycrystalline materials. Metall Trans 17A:2199Google Scholar
  2. Adams BL, Morris PR, Wang TT, Willden KS, Wright SI (1987) Description of orientation coherence in polycrystalline materials. Acta Metall 35:2935CrossRefGoogle Scholar
  3. Bastos A, Zaefferer S, Raabe D, Schuh C (2006) Characterization of the microstructure and texture of nanostructured electrodeposited NiCo using electron backscatter diffraction (EBSD). Acta Mater 54:2451–2462CrossRefGoogle Scholar
  4. Bastos A, Zaefferer S, Raabe D (2008) 3-Dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co-Ni films. J Microsc 230:487–498CrossRefPubMedMathSciNetGoogle Scholar
  5. Cheng Z, Sakamoto T, Takahashi M, Kuramoto Y, Owari M, Nihei Y (1998) Development of ion and electron dual focused beam apparatus for high spatial resolution three-dimensional microanalysis of solid materials. J Vac Sci Technol B 16:2473–2478CrossRefGoogle Scholar
  6. El-Sherik AM, Erb U (1995) Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. J Mater Sci 30: 5743–5749CrossRefADSGoogle Scholar
  7. Gómez E, Ramirez J, Vallés E (1998) Electrodeposition of Co-Ni alloys. J Appl Electrochem 28:71–79CrossRefGoogle Scholar
  8. Groeber MA, Haley BK, Uchic MD, Dimiduk DM, Gosh S (2006) 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater Charact 57:259–273CrossRefGoogle Scholar
  9. Hackney SA, Shiflet GJ (1986) Anisotropic interfacial energy at pearlite lamellar boundaries in a high-purity Fe-0.80-percent C-alloy. Scripta Metall 20:389–394CrossRefGoogle Scholar
  10. Howard CV, Reed MG (1998) Unbiased stereology—Three- dimensional measurement in microscopy. Bios Scientific Publications, OxfordGoogle Scholar
  11. Jin H, Wu PD, Ball MD, Lloyd DJ (2005) Three-dimensional texture determination of 6111 aluminium alloy sheet by precise serial sectioning and EBSD measurement. Mater Sci Technol 21:419–428CrossRefGoogle Scholar
  12. Kato NI, Kohno Y, Saka H (1999) Side-wall damage in a transmission electron microscopy specimen of crystalline Si prepared by focused ion beam etching. J Vac Sci Tech A17:1201–1204Google Scholar
  13. Konrad J, Zaefferer S, Raabe D (2006) Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Mater 54:1369–1380CrossRefGoogle Scholar
  14. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefPubMedGoogle Scholar
  15. Lauridsen EM, Schmidt S, Nielsen SF, Margulies L, Poulsen HF, Juul-Jensen D (2006) Non-destructive characterization of recrystallization kinetics using three-dimensional X-ray diffraction microscopy. Scripta Mater 55: 51–56CrossRefGoogle Scholar
  16. Margulies L, Winther G, Poulsen HF (2001) In situ measurement of grain rotation during deformation of polycrystals. Science 291:2392CrossRefPubMedADSGoogle Scholar
  17. Matteson TL, Schwarz SW, Houge EC, Kempshall BW, Gianuzzi LA (2002) Electron backscattering diffraction investigation of focused ion beam surfaces. J Electron Mater 31:33–39CrossRefADSGoogle Scholar
  18. Michael JR, Schischka J, Altmann F (2003) HKL technology EBSD application catalogue. HKL Technology, Hobro, DenmarkGoogle Scholar
  19. Mulders JJL, Day AP (2005) Three-dimensional texture analysis. Mater Sci Forum 495–497: 237–242Google Scholar
  20. Poulsen HF et al (2001) Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J Appl Cryst 34:751CrossRefGoogle Scholar
  21. Prasad SV, Michael JR, Christenson TR (2003) EBSD studies on wear-induced subsurface regions in LIGA nickel. Scripta Mater 48:255–260CrossRefGoogle Scholar
  22. Preusser A, Klein H, Bunge HJ (2005) Texture and microstructure imaging by the moving area detector method. Solid State Phenom 105:41334CrossRefGoogle Scholar
  23. Rohrer GS, Saylor DM, El-Dasher BS, Adams BL, Rollett AD, Wynblatt P (2004) The distribution of internal interfaces in polycrystals. Z Metallkd 95:197–214Google Scholar
  24. Rowenhorst DJ, Gupta A, Feng CR, Spanos G (2006) 3D crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning. Scripta Mater 55:1112016Google Scholar
  25. Sheng TT, Goh GP, Tung CH, Wang LF (1997) Precision transmission electron microscopy sample preparation using a focused ion beam by extraction method. J Vac Sci Technol B 15:610–613CrossRefGoogle Scholar
  26. Spanos G (2006) Viewpoint set no. 41 “3D characterization and analysis of materials.” Scripta Mater 55:3CrossRefGoogle Scholar
  27. Spanos G, Aaronson HI (1990) The interfacial structure and habit plane of proeutectoid cementite plates. Acta Metall Mater 38:2721–2732CrossRefGoogle Scholar
  28. Uchic MD, Groeber M, Wheeler R, Scheltens F, Dimiduk DM (2004) Augmenting the 3D characterization capability of the dual beam FIB-SEM. Microsc Microanal 10: 1136–1137Google Scholar
  29. Vicenzo A, Cavallotti PL (2004) Growth modes of electrodeposited cobalt. Electrochim Acta 49:4079–4089CrossRefGoogle Scholar
  30. Wu BYC, Ferreira PJ, Schuh CA (2005) Nanostructured Ni-Co alloys with tailorable grain size and twin density. Metall Mater Trans A 36:1927–1936CrossRefGoogle Scholar
  31. Yang W et al (2004) Differential-aperture X-ray structural microscopy: A submicron-resolution three-dimensional probe of local microstructure and strain. Micron 35:431CrossRefPubMedGoogle Scholar
  32. Zaafarani N, Raabe D, Singh RN, Roters F, Zaefferer S (2006) Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater 54:1863–1876CrossRefGoogle Scholar
  33. Zaefferer S (2007) On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns. Ultramicroscopy 107:254–266CrossRefPubMedGoogle Scholar
  34. Zaefferer S (2008) 3D EBSD-based orientation microscopy and 3D materials simulation tools: An ideal combination to study microstructure formation processes. In: Luysberg M, Tillmann K, Weirich T (eds) EMC 2008, Vol. 1: Instrumentation and methods. Springer-Verlag, Berlin, pp 641–642Google Scholar
  35. Zaefferer S, Konrad J, Raabe D (2005) 3D-orientation microscopy in a combined focused ion beam (FIB)-scanning electron microscope: A new dimension of microstructure characterisation. Microscopy Conference 2005, Davos, p 63Google Scholar
  36. Zaefferer S, Wright SI, Raabe D (2008) 3D-orientation microscopy in a FIB SEM: A new dimension of microstructure characterisation. Metall Mater Trans 39A:374–389CrossRefGoogle Scholar
  37. Zhou DS, Shiflet GJ (1992) Ferrite-Cementite crystallography in pearlite. Metall Trans 23A:1259–1269Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Max Planck Institute for Iron ResearchMax-Planck-Straße 1D-40237 DüsseldorfGermany
  2. 2.EDAX-TSLDraperUSA

Personalised recommendations