Skip to main content

Characterization of Shear Localization and Shock Damage with EBSD

  • Chapter
  • First Online:
Electron Backscatter Diffraction in Materials Science

This chapter provides examples of the application of EBSD characterization to microstructures influenced by two conditions: (1) shear localization, and (2) dynamic deformation and damage from shock loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asaro RJ, Rice JR (1977) Strain localization in ductile single crystals. J Mech Phys Solid 25:309–338

    Article  MATH  ADS  Google Scholar 

  • Baczynski J, Jonas JJ (1996) Texture development during the torsion testing of alpha-iron and two IF steels. Acta Mater 44:4273–4288

    Article  CAS  Google Scholar 

  • Becker R (2004) Effects of crystal plasticity on materials loaded at high pressures and strain rates. Int J Plasticity 20:1983–2006

    Article  MATH  Google Scholar 

  • Bingert JF, Henrie BL, Worthington DL (2007) Three-dimensional characterization of incipiently spalled tantalum. Metall Mater Trans A 38:1712–1721

    Article  CAS  Google Scholar 

  • Bronkhorst C, Cerreta E, Xue Q, Maudlin PJ, Mason TA, Gray III GT (2006) An experimental and numerical study of the localization behavior of tantalum and stainless steel. Int J Plasticity 22:1304–1335

    Article  MATH  CAS  Google Scholar 

  • Bronkhorst CA, Hansen BL, Cerreta EK, Bingert JF (2007) Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions. J Mech Phys Solid 55:2351–2383

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Case S, Horie Y (2007) Discrete element simulation of shock wave propagation in polycrystalline copper. J Mech Phys Solid 55:589–614

    Article  MATH  CAS  ADS  Google Scholar 

  • Clifton RJ, Duffy J, Hartley KA, Shawki TG (1984) On critical conditions for shear band formation at high-strain rates. Scripta Metall 18:443–448

    Article  CAS  Google Scholar 

  • Dougherty LM, Cerreta EK, Pfeif EA, Trujillo CP, Gray GT III (2007) The impact of peak shock stress on the microstructure and shear behavior of 1028 steel. Acta Mater 55:6356–6364

    Article  CAS  Google Scholar 

  • Grady DE (1982) Local inertial effects in dynamic fragmentation. J Appl Phys 53:322–325

    Article  ADS  Google Scholar 

  • Gray GT, Hayes DB, Hixson RS (2000) Influence of the shock-induced alpha-epsilon transition in Fe on its post-shock substructure evolution and mechanical behavior. J Phys-Paris 10:755–760

    Google Scholar 

  • Hopkinson B (1914) Method for measuring the pressure produced in the detonation of high explosives or by the impact of bullets. T R Soc-Lond 213A:437–456

    Article  ADS  Google Scholar 

  • Johnson JN (1981) Dynamic fracture and spallation in ductile solids. J Appl Phys 52:2812–2825

    Article  ADS  Google Scholar 

  • Li S, Beyerline IJ, Bourke MAM (2005) Texture formation during equal channel angular extrusion of fcc and bcc materials: comparison with simple shear. Mater Sci Eng A 394:66–77

    Article  CAS  Google Scholar 

  • Li S, Gazder AA, Beyerlein IJ, Pereloma EV, Davies CHJ (2006) Effect of processing route on microstructure and texture development in equal channel angular extrusion of interstitial-free steel. Acta Mater 54:1087–1100

    Article  CAS  Google Scholar 

  • Meyer LW, Manwaring S (1986) Critical adiabatic shear strength of low alloyed steel under compressive loading In: Murr LE, Staudhammer KP, Meyers M (eds) Metallurgical applications of shock wave and high strain rate phenomena. Marcel Dekker, New York, p 657

    Google Scholar 

  • Meyers MA, Aimone CT (1983) Dynamic fracture (spalling) of metals. Prog Mater Sci 28:1–96

    Article  CAS  Google Scholar 

  • Meyers MA (1994) Dynamic behavior of materials. Wiley Interscience, New York

    Book  MATH  Google Scholar 

  • Meyers MA, Xu YB, Xue Q, Perez-Prado MT, McNelley TR (2003) Microstructural evolution in adiabatic shear localization in stainless steel. Acta Mater 51:1307–1325

    Article  CAS  Google Scholar 

  • Minich RW, Cazamius JU, Kumar M, Schwartz AJ (2004) Effect of microstructural length scales on spall behavior of copper. Metall Mater Trans A 35:2663–2673

    Article  Google Scholar 

  • Montheillet F, Cohen M, Jonas JJ (1984) Axial stresses and texture development during the torsion testing of Al, Cu and α-Fe. Acta Metall 32:2077–2089

    Article  CAS  Google Scholar 

  • Nemat-Nasser S, Li Y-F, Isaacs JB (1994) Experimental/computational evaluation of flow stress at high strain rates with application to adiabatic shear banding. Mech Mater 17:111–134

    Article  Google Scholar 

  • Radovitzky R, Cuitino A (2003) Direct numerical simulation of polycrystals. In: Collection of technical papers—Structures, structural dynamics and materials conference, vol. 3, April 7–10, Norfolk, VA, pp 1920–1928

    Google Scholar 

  • Rittel, D, Wang ZG, Merzer M (2006) Adiabatic shear failure and dynamic stored energy of cold work. Phys Rev Lett 96: 1–4

    Article  CAS  Google Scholar 

  • Semiatin SL, Staker MA, Jonas JJ (1984) Plastic instability and flow localization in shear at high rates of deformation. Acta Metall 32:1347–1354

    Article  CAS  Google Scholar 

  • Xue Q, Meyers M, Nesterenko VF (2002) Self-organization of shear bands in titanium and Ti-6Al-4 V alloy. Acta Mater 50:575–596

    Article  CAS  Google Scholar 

  • Xue Q, Gray GT (2006a) Development of adiabatic shear bands in annealed 316L stainless steel: Part I. Correlation between evolving microstructure and mechanical behavior. Metall Mater Trans A 37:2435–2446

    Article  Google Scholar 

  • Xue Q, Gray GT (2006b) Development of adiabatic shear bands in annealed 316L stainless steel: Part II. TEM studies of the evolution of microstructure during deformation localization. Metall Mater Trans A 37:2447–2458

    Article  Google Scholar 

  • Xue Q, Bingert JF, Henrie BL, Gray GT III (2008) EBSD characterization of dynamic shear band regions in pre-shocked and as-received 304 stainless steels. Mater Sci Eng A 473: 279–289

    Article  CAS  Google Scholar 

  • Zurek AK, Follansbee PS, Hack J (1990) High strain-rate-induced cleavage fracture in mild carbon steel. Metall Mater Trans A 21:431–439

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Los Alamos National Laboratory (LANL) is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. The authors wish to thank Carl Trujillo, Anna Breiner, Mike Lopez, and Anna Zurek of LANL, Ben Henrie of Stanley Associates, and Daniel Worthington of the University of Texas at Austin for their contributions with experimental and characterization aspects of this work. Paulo Rigg, Cynthia Schwartz, Robert Hixson, Alexander Saunders, Frank Merrill, Chris Morris, Kris Kwiatkowski, and the LANSCE Proton Radiography team at LANL are acknowledged for providing the HE-drive tantalum sample. Partial support was provided by the Joint DoD/DOE Munitions Technology Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Bingert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bingert, J.F., Livescu, V., Cerreta, E.K. (2009). Characterization of Shear Localization and Shock Damage with EBSD. In: Schwartz, A., Kumar, M., Adams, B., Field, D. (eds) Electron Backscatter Diffraction in Materials Science. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88136-2_22

Download citation

Publish with us

Policies and ethics