Skip to main content

Grain Boundary Networks

  • Chapter
  • First Online:
Electron Backscatter Diffraction in Materials Science

Statistical information about grain orientations within a polycrystal has been available to materials researchers for many decades. In particular, the orientation distribution, or crystallographic texture information, has been measured using X-ray diffraction techniques since about 1950. Consequently, the role of texture in materials performance and design is widely appreciated and commonly taught in the core Materials Science curriculum. However, texture data represent only “one-point” statistics, and do not capture microstructural geometry or topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Basinger JA, Homer ER, Fullwood DT, Adams BL (2005) Two-dimensional grain boundary percolation in alloy 304 stainless steel. Scripta Mater 53(8):959–963

    Article  CAS  Google Scholar 

  • Bouchaud E (1997) Scaling properties of cracks. J Phys-Condens Mat 9(21):4319–4344

    Article  CAS  ADS  Google Scholar 

  • Brandon DG (1966) Structure of high-angle grain boundaries. Acta Metall 14(11):1479

    Article  CAS  Google Scholar 

  • Chen Y, Schuh CA (2006) Diffusion on grain boundary networks: Percolation theory and effective medium approximations. Acta Mater 54(18):4709–4720

    Article  CAS  Google Scholar 

  • Chen Y, Schuh CA (2007) Coble creep in heterogeneous materials: The role of grain boundary engineering. Phys Rev B 76(6):064111

    Article  ADS  CAS  Google Scholar 

  • Frary M, Schuh CA (2003a) Combination rule for deviant CSL grain boundaries at triple junctions. Acta Mater 51(13):3731–3743

    Article  CAS  Google Scholar 

  • Frary M, Schuh CA (2003b) Nonrandom percolation behavior of grain boundary networks in high-T-c superconductors. Appl Phys Lett 83(18):3755–3757

    Article  CAS  ADS  Google Scholar 

  • Frary M, Schuh CA (2004) Percolation and statistical properties of low- and high-angle interface networks in polycrystalline ensembles. Phys Rev B 69(13):134115

    Article  ADS  CAS  Google Scholar 

  • Frary M, Schuh CA (2005a) Connectivity and percolation behaviour of grain boundary networks in three dimensions. Philos Mag 85(11):1123–1143

    Article  CAS  ADS  Google Scholar 

  • Frary M, Schuh CA (2005b) Grain boundary networks: Scaling laws, preferred cluster structure, and their implications for grain boundary engineering. Acta Mater 53(16): 4323–4335

    Article  CAS  Google Scholar 

  • Fullwood DT, Basinger JA, Adams BL (2006) Lattice-based structures for studying percolation in two-dimensional grain networks. Acta Mater 54(5):1381–1388

    Article  CAS  Google Scholar 

  • Gao Y, Stolken JS, Kumar M, Ritchie RO (2007) High-cycle fatigue of nickel-base superalloy Rene 104 (ME3): Interaction of microstructurally small cracks with grain boundaries of known character. Acta Mater 55(9):3155–3167

    Article  CAS  Google Scholar 

  • Gaudett MA, Scully JR (1994) Applicability of bond percolation theory to intergranular stress-corrosion cracking of sensitized Alsl 304 stainless-steel. Metall Mater Trans A 25(4):775–787

    Article  Google Scholar 

  • Gertsman VY (2001a) Coincidence site lattice theory of multicrystalline ensembles. Acta Crystallogr A 57:649–655

    Article  CAS  PubMed  Google Scholar 

  • Gertsman VY (2001b) Geometrical theory of triple junctions of CSL boundaries. Acta Crystallogr A 57:627–627

    Article  Google Scholar 

  • Gertsman VY, Henager CH (2003) Grain boundary junctions in microstructure generated by multiple twinning. Interface Sci 11(4):403–415

    Article  CAS  Google Scholar 

  • Grimmett G (1989) Percolation. Springer-Verlag, New York

    MATH  Google Scholar 

  • King A, Johnson G, Engelberg D, Ludwig W, Marrow J (2008) Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 321(5887):382–385

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kopezky CV, Andreeva AV, Sukhomlin GD (1991) Multiple twinning and specific properties of Sigma = 3n boundaries in FCC crystals. Acta Metall Mater 39(7):1603–1615

    Article  Google Scholar 

  • Krupp U, Kane WM, Liu XY, Dueber O, Laird C, McMahon CJ (2003) The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718. Mater Sci Eng A 349(1–2):213–217

    Google Scholar 

  • Krupp U, Wagenhuber PEG, Kane WM, McMahon CJ (2005) Improving resistance to dynamic embrittlement and intergranular oxidation of nickel based superalloys by grain boundary engineering type processing. Mater Sci Tech 21(11):1247–1254

    Article  CAS  Google Scholar 

  • Lehockey EM, Palumbo G, Lin P (1998a) Improving the weldability and service performance of nickel- and iron-based superalloys by grain boundary engineering. Metall Mater Trans A 29(12):3069–3079

    Article  Google Scholar 

  • Lehockey EM, Palumbo G, Lin P, Brennenstuhl A (1998b) Mitigating intergranular attack and growth in lead-acid battery electrodes for extended cycle and operating life. Metall Mater Trans A 29(1):387–396

    Article  Google Scholar 

  • Lejcek P, Paidar V (2005) Challenges of interfacial classification for grain boundary engineering. Mater Sci Tech 21(4):393–398

    Article  CAS  Google Scholar 

  • Lim LC, Raj R (1984) Effect of boundary structure on slip-induced cavitation in polycrystalline nickel. Acta Metall 32(8):1183–1190

    Article  CAS  Google Scholar 

  • McGarrity ES, Duxbury PM, Holm EA (2005) Statistical physics of grain-boundary engineering. Phys Rev E 71(2):026102

    Article  CAS  ADS  Google Scholar 

  • Mclachlan DS (1987) An equation for the conductivity of binary-mixtures with anisotropic grain structures. J Phys C 20(7):865–877

    Article  ADS  Google Scholar 

  • Meinke JH, McGarrity ES, Duxbury PM, Holm EA (2003) Scaling laws for critical manifolds in polycrystalline materials. Phys Rev E 68(6):066107

    Article  CAS  ADS  Google Scholar 

  • Michiuchi M, Kokawa H, Wang ZJ, Sato YS, Sakai K (2006) Twin-induced grain boundary engineering for 316 austenitic stainless steel. Acta Mater 54(19):5179–5184

    Article  CAS  Google Scholar 

  • Miyazawa K, Iwasaki Y, Ito K, Ishida Y (1996) Combination rule of Sigma values at triple junctions in cubic polycrystals. Acta Crystallogr A 52:787–796

    Article  Google Scholar 

  • Nichols CS, Cook RF, Clarke DR, Smith DA (1991a) Alternative length scales for polycrystalline materials 1. Microstructure evolution. Acta Metall Mater 39(7):1657–1665

    Article  Google Scholar 

  • Nichols CS, Cook RF, Clarke DR, Smith DA (1991b) Alternative length scales for polycrystalline materials 2. Cluster morphology. Acta Metall Mater 39(7):1667–1675

    Article  Google Scholar 

  • Randle V (2004) Twinning-related grain boundary engineering. Acta Mater 52(14):4067–4081

    Article  CAS  Google Scholar 

  • Randle V (2006) “Special” boundaries and grain boundary plane engineering. Scripta Mater 54(6):1011–1015

    Article  CAS  Google Scholar 

  • Read WT, Shockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78(3):275–289

    Article  MATH  CAS  ADS  Google Scholar 

  • Reed BW, Kumar M (2006) Mathematical methods for analyzing highly-twinned grain boundary networks. Scripta Mater 54(6):1029–1033

    Article  CAS  Google Scholar 

  • Reed BW, Kumar M, Minich RW, Rudd RE (2008) Fracture roughness scaling and its correlation with grain boundary network structure. Acta Mater 56:3278–3289

    Article  CAS  Google Scholar 

  • Reed BW, Minich RW, Rudd RE, Kumar M (2004) The structure of the cubic coincident site lattice rotation group. Acta Crystallogr A 60:263–277

    Article  MATH  PubMed  MathSciNet  CAS  Google Scholar 

  • Romero D, Martinez L, Fionova L (1996) Computer simulation of grain boundary spatial distribution in a three-dimensional polycrystal with cubic structure. Acta Mater 44(1): 391–402

    Article  CAS  Google Scholar 

  • Schuh CA, Frary M (2006) Correlations beyond the nearest-neighbor level in grain boundary networks. Scripta Mater 54(6):1023–1028

    Article  CAS  Google Scholar 

  • Schuh CA, Kumar M, King WE (2003a) Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater 51(3):687–700

    Article  CAS  Google Scholar 

  • Schuh CA, Kumar M, King WE (2003b) Connectivity of CSL grain boundaries and the role of deviations from exact coincidence. Z Metallkd 94(3):323–328

    CAS  Google Scholar 

  • Schuh CA, Kumar M, King WE (2005) Universal features of grain boundary networks in FCC materials. J Mater Sci 40(4):847–852

    Article  CAS  ADS  Google Scholar 

  • Schuh CA, Minich RW, Kumar M (2003c) Connectivity and percolation in simulated grain-boundary networks. Philos Mag 83(6):711–726

    Article  CAS  ADS  Google Scholar 

  • Schwartz AJ, King WE, Kumar M (2006) Influence of processing method on the network of grain boundaries. Scripta Mater 54(6):963–968

    Article  CAS  Google Scholar 

  • Shimada M, Kokawa H, Wang ZJ, Sato YS, Karibe I (2002) Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering. Acta Mater 50(9):2331–2341

    Article  CAS  Google Scholar 

  • Spigarelli S, Cabibbo M, Evangelista E, Palumbo G (2003) Analysis of the creep strength of a low-carbon AISI 304 steel with low-Sigma grain boundaries. Mater Sci Eng A 352(1–2):93–99

    Google Scholar 

  • Stauffer D, Aharony A (1994) Introduction to percolation theory, rev 2nd ed. Routledge, London

    Google Scholar 

  • Van Siclen CD (2006) Intergranular fracture in model polycrystals with correlated distribution of low-angle grain boundaries. Phys Rev B 73(18):184118

    Article  ADS  CAS  Google Scholar 

  • Watanabe T (1983) Grain-boundary sliding and stress-concentration during creep. Metall Trans A 14(4):531–545

    Article  CAS  Google Scholar 

  • Wells DB, Stewart J, Herbert AW, Scott PM, Williams DE (1989) The use of percolation theory to predict the probability of failure of sensitized, austenitic stainless-steels by intergranular stress-corrosion cracking. Corrosion 45(8):649–660

    CAS  Google Scholar 

  • Zhao JW, Koontz JS, Adams BL (1988) Intercrystalline structure distribution in alloy 304 stainless-steel. Metall Trans A 19(5):1179–1185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan W. Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reed, B.W., Schuh, C.A. (2009). Grain Boundary Networks. In: Schwartz, A., Kumar, M., Adams, B., Field, D. (eds) Electron Backscatter Diffraction in Materials Science. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88136-2_15

Download citation

Publish with us

Policies and ethics