Advertisement

Cosmology

  • Øyvind Grøn
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 772)

We will consider expanding homogeneous and isotropic models of the universe. We introduce an expanding frame of reference with the galactic clusters as reference particles. Then we introduce a “comoving coordinate system” in this frame of reference with spatial coordinates χ, θ φ. We use time measured on standard clocks carried by the galactic clusters as coordinate time (cosmic time).

Keywords

Hubble Parameter Vacuum Energy Critical Density Universe Model Expansion Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. 1.
    Grøn, Ø. and Elgarøy, Ø. 2007. Is space expanding in the friedmann universe models, Am. J. Phys. 75, 151–157.ADSCrossRefGoogle Scholar
  2. 2.
    McGaugh, S. 2001. Constraints on the radial mass distribution of dark matter halos from rotation curves. In: P. Natarajan, ed., The Shapes of Galaxies and their Dark Halos, pp. 186–193, World Scientific.Google Scholar
  3. 3.
    Linde, A. 2001. Inflation and string cosmology, Int. J. Mod. Phys. A17SI, 89–104.MathSciNetGoogle Scholar
  4. 4.
    de Bernadis, P., et al. 2001. Multiple peaks in the angular power spectrum of the cosmic microwave background: Significance and consequences for cosmology, Astrophys. J. 584, 559–566.Google Scholar
  5. 5.
    Stompor, R., et al. 2001. Cosmological implications of the MAXIMA-1 high resolution cosmic microwave background anisotropy measurement, Astrophys. J. 561, L7–L10.ADSCrossRefGoogle Scholar
  6. 6.
    Pryke, C., et al. 2001. Cosmological parameter extraction from the first season of observations with DASI, Astrophys. J. 568, 46–51.ADSCrossRefGoogle Scholar
  7. 7.
    Riess, A. G., et al. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116, 1009–1038.ADSCrossRefGoogle Scholar
  8. 8.
    Perlmutter, S., et al. 1999. Measurements of omega and lambda from 42 high-redshift supernovae, Astrophys. J. 517, 565–586.ADSCrossRefGoogle Scholar
  9. 9.
    Grøn, Ø. 2002. A new standard model of the universe, Eur. J. Phys. 23, 135–144.ADSCrossRefGoogle Scholar
  10. 10.
    Zlatev, I., Wang, L., and Steinhardt, P. J.: 1999, Quintessence, cosmic coincidence, and the cosmological constant, Phys. Rev. Lett. 82, 896–899.ADSCrossRefGoogle Scholar
  11. 11.
    Carroll, S. M. 1998. Quintessence and the rest of the world, Phys. Rev. Lett. 81, 3067–3070.ADSCrossRefGoogle Scholar
  12. 12.
    Zeldovich, Y. 1968. The cosmological constant and the theory of elementary particles, Sov. Phys. Usp. 11, 381–393.ADSCrossRefGoogle Scholar
  13. 13.
    Grøn, Ø. 1986. Repulsive gravitation and inflationary universe models, Am. J. Phys. 54, 46–52.ADSCrossRefGoogle Scholar
  14. 14.
    Riess, A. G. 2001. The farthest known supernova: Support for an accelerating universe and a glimpse of the epoch of deceleration, Astrophys. J. 560, 49–71.ADSCrossRefGoogle Scholar
  15. 15.
    Turner, M. S. and Riess, A. G. 2002. Do SNe Ia provide direct evidence for past deceleration of the universe? Astrophys. J. 569, 18.ADSCrossRefGoogle Scholar
  16. Carroll,.
    S. M. 2001. Dark Energy and the Preposterous Universe, astro-ph/0107571.Google Scholar
  17. Turner,.
    M. S. 2001. Dark Energy and the New Cosmology, astro-ph/0108103.Google Scholar
  18. 18.
    Guth, A. H. 1981. The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D23, 347–356.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Oslo University College Faculty of EngineeringCpy Olavs PlassNorway

Personalised recommendations