Skip to main content

Interventions in Aging and Neurodegenerative Disease: Effects on Adult StemCells

  • Chapter
  • First Online:
Current Hypotheses and Research Milestones in Alzheimer's Disease

Abstract

Throughout the entire life span, stem cells are present in many organs of our body and continue to produce new cells which are critical to maintain homeostasis and to repair damaged tissues. In the brain, stem cells generate new neurons through a process called neurogenesis. With age, stem cells lose their ability to generate new cells, although the number of stem cells remains constant over time. This may be due in part to cellular stresses such as inflammation, oxidative stress, and loss of trophic factors that accumulate with age. A better understanding of the regulatory factors which control neurogenesis is necessary in order to utilize the potential of the endogenous adult stem cells to treat the degenerative condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer's disease

CNS:

central nervous system

GCL:

granule cell layer

IL:

interleukin

NSAID:

nonsteroidal anti-inflammatory drug

NSCs:

neural stem/progenitor cells; 6-OHDA, 6-hydroxydopamine; PD, Parkinson's disease

SGZ:

subgranular zone

TNF:

tumor necrosis factor-α

References

  1. Eriksson PS, Perfilieva E, Bjork-Eriksson T (1998) Neurogenesis in the adult human hippocampus. Nat Med 4: 1313–1317

    Article  PubMed  CAS  Google Scholar 

  2. Kempermann G, Kuhn HG, Gage FH (1997) Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci USA 94: 10409–10414

    Article  PubMed  CAS  Google Scholar 

  3. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130: 391–399

    Article  PubMed  CAS  Google Scholar 

  4. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415: 1030–1034

    Article  PubMed  CAS  Google Scholar 

  5. Drapeau E, Nora Abrous D (2008) Role of neurogenesis in age-related memory disorders. Aging Cell 7(4): 569–589

    Google Scholar 

  6. Kokaia Z, Lindvall O (2003) Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 13: 127–132

    Article  PubMed  CAS  Google Scholar 

  7. Bernal GM, Peterson DA (2004) Neural stem cells as therapeutic agents for age-related brain repair. Aging Cell 3: 345–351

    Article  PubMed  CAS  Google Scholar 

  8. Zhang C, McNeil E, Dressler L, Siman R (2007) Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer’s disease. Exp Neurol 204: 77–87

    Article  PubMed  CAS  Google Scholar 

  9. Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C (2007) Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci 27: 6771–6780

    Article  PubMed  CAS  Google Scholar 

  10. Nuber S, Petrasch-Parwez E, Winner B (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28: 2471–2484

    Article  PubMed  CAS  Google Scholar 

  11. Hoglinger GU, Rizk P, Muriel MP (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7: 726–735

    Article  PubMed  Google Scholar 

  12. Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained five-fold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52: 135–143

    Article  PubMed  Google Scholar 

  13. Kronenberg G, Bick-Sander A, Bunk E, Wolf C, Ehninger D, Kempermann G (2006) Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 27: 1505–1513

    Article  PubMed  Google Scholar 

  14. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16: 2027–2033

    PubMed  CAS  Google Scholar 

  15. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132: 645–660

    Article  PubMed  CAS  Google Scholar 

  16. Hattiangady B, Shetty AK (2008) Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging 29: 129–147

    Article  PubMed  CAS  Google Scholar 

  17. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585–621

    Article  Google Scholar 

  18. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433: 760–764

    Article  PubMed  CAS  Google Scholar 

  19. Carlson ME, Conboy IM (2007) Loss of stem cell regenerative capacity within aged niches. Aging Cell 6: 371–382

    Article  PubMed  CAS  Google Scholar 

  20. Hattiangady B, Rao MS, Shetty GA, Shetty AK (2005) Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp Neurol 195: 353–371

    Article  PubMed  CAS  Google Scholar 

  21. Shetty AK, Hattiangady B, Shetty GA (2005) Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. Glia 51: 173–186

    Article  PubMed  Google Scholar 

  22. Sapolsky RM (1992) Do glucocorticoid concentrations rise with age in the rat? Neurobiol Aging 13: 171–174

    Article  PubMed  CAS  Google Scholar 

  23. Herber DL, Mercer M, Roth LM (2007) Microglial activation is required for Abeta clearance after intracranial injection of lipopolysaccharide in APP transgenic mice. J Neuroimmune Pharmacol 2: 222–231

    Article  PubMed  Google Scholar 

  24. Stromberg I, Gemma C, Vila J, Bickford PC (2005) Blueberry- and spirulina-enriched diets enhance striatal dopamine recovery and induce a rapid, transient microglia activation after injury of the rat nigrostriatal dopamine system. Exp Neurol 196: 298–307

    Article  PubMed  Google Scholar 

  25. Hirsch EC, Hunot S, Damier P, Faucheux B (1998) Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol 44: S115–S120

    PubMed  CAS  Google Scholar 

  26. Gemma C, Catlow B, Cole M (2007) Early inhibition of TNFalpha increases 6-hydroxydopamine-induced striatal degeneration. Brain Res 1147: 240–247

    Article  PubMed  CAS  Google Scholar 

  27. Ekdahl CT, Claasen J-H, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 100: 13632–13637

    Article  PubMed  CAS  Google Scholar 

  28. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302: 1760–1765

    Article  PubMed  CAS  Google Scholar 

  29. Roubenoff R, Harris TB, Abad LW, Wilson PW, Dallal GE, Dinarello CA (1998) Monocyte cytokine production in an elderly population: effect of age and inflammation. J Gerontol A Biol Sci Med Sci 53: M20–M26

    Article  PubMed  CAS  Google Scholar 

  30. Wilson CJ, Finch CE, Cohen HJ (2002) Cytokines and cognition – the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50: 2041–2056

    Article  PubMed  Google Scholar 

  31. Gemma C, Mesches MH, Sepesi B, Choo K, Holmes DB, Bickford PC (2002) Diets enriched in foods with high antioxidant activity reverse age-induced decreases in cerebellar beta-adrenergic function and increases in proinflammatory cytokines. J Neurosci 22: 6114–6120

    PubMed  CAS  Google Scholar 

  32. Barrientos RM, Higgins EA, Sprunger DB, Watkins LR, Rudy JW, Maier SF (2002) Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus. Behav Brain Res 134: 291–298

    Article  PubMed  CAS  Google Scholar 

  33. Lynch MA (1998) Analysis of the mechanisms underlying the age-related impairment in long-term potentiation in the rat. Rev Neurosci 9: 169–201

    Article  PubMed  CAS  Google Scholar 

  34. Pugh CR, Nguyen KT, Gonyea JL (1999) Role of interleukin-1 beta in impairment of contextual fear conditioning caused by social isolation. Behav Brain Res 106: 109–118

    Article  PubMed  CAS  Google Scholar 

  35. Rachal Pugh C, Fleshner M, Watkins LR, Maier SF, Rudy JW (2001) The immune system and memory consolidation: a role for the cytokine IL-1beta. Neurosci Biobehav Rev 25: 29–41

    Article  PubMed  CAS  Google Scholar 

  36. Benveniste EN (1992) Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol 263: C1–C16

    PubMed  CAS  Google Scholar 

  37. Rothwell N, Allan S, Toulmond S (1997) The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J Clin Invest 100: 2648–2652

    Article  PubMed  CAS  Google Scholar 

  38. Dinarello CA (1998) Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol 16: 457–499.

    Article  PubMed  CAS  Google Scholar 

  39. Farrar WL, Kilian PL, Ruff MR, Hill JM, Pert CB (1987) Visualization and characterization of interleukin 1 receptors in brain. J Immunol 139: 459–463

    PubMed  CAS  Google Scholar 

  40. Takao T, Tracey DE, Mitchell WM, De Souza EB (1990) Interleukin-1 receptors in mouse brain: characterization and neuronal localization. Endocrinology 127: 3070–3078

    Article  PubMed  CAS  Google Scholar 

  41. Sims JE (2002) IL-1 and IL-18 receptors, and their extended family. Curr Opin Immunol 14: 117–122

    Article  PubMed  CAS  Google Scholar 

  42. Mesches MH, Gemma C, Veng LM (2004) Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiol Aging 25: 315–324

    Article  PubMed  CAS  Google Scholar 

  43. Gemma C, Fister M, Hudson C, Bickford PC (2005) Improvement of memory for context by inhibition of caspase-1 in aged rats. Eur J Neurosci 22: 1751–1756

    Article  PubMed  Google Scholar 

  44. Gemma C, Bachstetter AD, Cole MJ, Fister M, Hudson C, Bickford PC (2007) Blockade of caspase-1 increases neurogenesis in the aged hippocampus. Eur J Neurosci 26: 2795–2803

    Article  PubMed  Google Scholar 

  45. Wang X, Fu S, Wang Y (2007) Interleukin-1beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Mol Cell Neurosci 36: 343–354

    Article  PubMed  Google Scholar 

  46. Iosif RE, Ekdahl CT, Ahlenius H (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26: 9703–9712

    Article  PubMed  CAS  Google Scholar 

  47. Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 105: 751–756

    Article  PubMed  CAS  Google Scholar 

  48. Aloisi F (2001) Immune function of microglia. Glia 36: 165–179

    Article  PubMed  CAS  Google Scholar 

  49. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81: 1285–1297

    Article  PubMed  CAS  Google Scholar 

  50. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25: 677–686

    Article  PubMed  CAS  Google Scholar 

  51. Batchelor PE, Liberatore GT, Wong JY (1999) Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19: 1708–1716

    PubMed  CAS  Google Scholar 

  52. Miwa T, Furukawa S, Nakajima K, Furukawa Y, Kohsaka S (1997) Lipopolysaccharide enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia. J Neurosci Res 50: 1023–1029

    Article  PubMed  CAS  Google Scholar 

  53. Nakajima K, Kohsaka S (2004) Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 4: 65–84

    Article  PubMed  CAS  Google Scholar 

  54. Battista D, Ferrari CC, Gage FH, Pitossi FJ (2006) Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 23: 83–93

    Article  PubMed  Google Scholar 

  55. Butovsky O, Ziv Y, Schwartz A (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31: 149–160

    Article  PubMed  CAS  Google Scholar 

  56. Schwartz M, Butovsky O, Bruck W, Hanisch UK (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29: 68–74

    Article  PubMed  CAS  Google Scholar 

  57. Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29: 506–510

    Article  PubMed  CAS  Google Scholar 

  58. Bachstetter AD, Pabon MM, Cole MJ (2008) Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neurosci 9: 22

    Article  PubMed  Google Scholar 

  59. Bodles AM, Barger SW (2004) Cytokines and the aging brain – what we don’t know might help us. Trends Neurosci 27: 621–626

    Article  PubMed  CAS  Google Scholar 

  60. Joseph JA, Shukitt-Hale B, Casadesus G, Fisher D (2005) Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochem Res 30: 927–935

    Article  PubMed  CAS  Google Scholar 

  61. Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26: 349–354

    Article  PubMed  CAS  Google Scholar 

  62. Goronzy JJ, Weyand CM (2005) T cell development and receptor diversity during aging. Curr Opin Immunol 17: 468–475

    Article  PubMed  CAS  Google Scholar 

  63. Miller RA (1996) The aging immune system: primer and prospectus. Science 273: 70–74

    Article  PubMed  CAS  Google Scholar 

  64. Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13: 507–512

    Article  PubMed  CAS  Google Scholar 

  65. Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36: 118–124

    Article  PubMed  CAS  Google Scholar 

  66. Kim KD, Zhao J, Auh S (2007) Adaptive immune cells temper initial innate responses. Nat Med 13: 1248–1252

    Article  PubMed  CAS  Google Scholar 

  67. Stichel CC, Luebbert H (2007) Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells. Neurobiol Aging 28: 1507–1521

    Article  PubMed  CAS  Google Scholar 

  68. Bulloch K, Miller MM, Gal-Toth J (2008) CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J Comp Neurol 508: 687–710

    Article  PubMed  Google Scholar 

  69. Mooradian AD (1988) Effect of aging on the blood–brain barrier. Neurobiol Aging 9: 31–39

    Article  PubMed  CAS  Google Scholar 

  70. Mooradian AD (1994) Potential mechanisms of the age-related changes in the blood–brain barrier. Neurobiol Aging 15: 751–755

    Article  PubMed  CAS  Google Scholar 

  71. Morita T, Mizutani Y, Sawada M, Shimada A (2005) Immunohistochemical and ultrastructural findings related to the blood–brain barrier in the blood vessels of the cerebral white matter in aged dogs. J Comp Pathol 133: 14–22

    Article  PubMed  CAS  Google Scholar 

  72. Kipnis J, Avidan H, Caspi RR, Schwartz M (2004) Dual effect of CD4+CD25+ regulatory T cells in neurodegeneration: a dialogue with microglia. Proc Natl Acad Sci USA 101 Suppl 2: 14663–14669

    Article  Google Scholar 

  73. Butovsky O, Koronyo-Hamaoui M, Kunis G (2006) Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci USA 103: 11784–11789

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula C. Bickford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bachstetter, A.D., Gemma, C., Bickford, P.C. (2009). Interventions in Aging and Neurodegenerative Disease: Effects on Adult StemCells. In: Maccioni, R.B., Perry, G. (eds) Current Hypotheses and Research Milestones in Alzheimer's Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87995-6_3

Download citation

Publish with us

Policies and ethics