Skip to main content

Functional Limit Theorems

  • Chapter
  • First Online:
  • 2464 Accesses

Abstract

The classical central limit theorem was generalized to a functional central limit theorem by Donsker (1951) (see Theorem A.3.2). In words the result means that one considers the partial sums {S o, S 1,..., S n } of i.i.d. variables jointly for each n and shows that if the mean and variance are finite then the (polygonal) process obtained by normalization (and linear interpolation), behaves, asymptotically, like Brownian motion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. Basu, A.K. (1972): Invariance theorems for first passage time random variables. Canad. Math. Bull. 15, 171-176.

    MATH  MathSciNet  Google Scholar 

  2. Billingsley, P. (1968): Convergence of Probability Measures. John Wiley, New York.

    MATH  Google Scholar 

  3. Billingsley, P. (1999): Convergence of Probability Measures, 2nd ed. John Wiley, New York.

    MATH  Google Scholar 

  4. Bingham, N.H. (1973): Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. verw. Gebiete 26, 273-296.

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang, I.S. and Hsiung, CA. (1983): Strassen’s invariance principle for random subsequences. Z. Wahrsch. verw. Gebiete 64, 401-409.

    Article  MATH  MathSciNet  Google Scholar 

  6. Doney, R.A. (1982): On the existence of the mean ladder height for random walk. Z. Wahrsch. verw. Gebiete 59, 373-382.

    Article  MATH  MathSciNet  Google Scholar 

  7. Gut, A. (1973): A functional central limit theorem connected with extended renewal theory. Z. Wahrsch. verw. Gebiete 27, 123-129.

    Article  MATH  MathSciNet  Google Scholar 

  8. Gut, A. (1975a): Weak convergence and first passage times. J. Appl. Probab. 12, 324-332.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gut, A. and Janson, S. (1983): The limiting behaviour of certain stopped sums and some applications. Scand. J. Statist. 10, 281-292.

    MATH  MathSciNet  Google Scholar 

  10. Hall, P. and Heyde, C.C. (1980): Martingale Limit Theory and Its Application. Academic Press, New York.

    MATH  Google Scholar 

  11. Horváth, L. (1984b): Strong approximation of extended renewal processes. Ann. Probab. 12, 1149-1166.

    Article  MATH  MathSciNet  Google Scholar 

  12. Horvöth, L. (1984c): Strong approximation of certain stopped sums. Statist. Probab. Lett. 2, 181-185.

    Article  MathSciNet  Google Scholar 

  13. Horvöth, L.(1986): Strong approximations of renewal processes and their applications. Acta Math. Acad. Sci. Hungar. 47, 13-28.

    Article  Google Scholar 

  14. Huggins, R.M. (1985): Laws of the iterated logarithm for time changed Brownian motion with an application to branching processes. Ann. Probab. 13, 1148-1156.

    Article  MATH  MathSciNet  Google Scholar 

  15. Iglehart, D.L. and Whitt, W. (1971): The equivalence of functional central limit theorems for counting processes and associated partial sums. Ann. Math. Statist. 42, 1372-1378.

    Article  MATH  MathSciNet  Google Scholar 

  16. Janson, S. (1983): Renewal theory for m-dependent variables. Ann. Probab. 11, 558-568.

    Article  MATH  MathSciNet  Google Scholar 

  17. Lindberger, K. (1978): Functional limit theorems for cumulative processes and stopping times. Z. Wahrsch. verw. Gebiete 44, 47-56.

    Article  MATH  MathSciNet  Google Scholar 

  18. Serfozo, R.F. (1975): Functional limit theorems for stochastic processes based on embedded processes. Adv. in Appl. Probab. 7, 123-139.

    Article  MATH  MathSciNet  Google Scholar 

  19. Strassen, V. (1964): An invariance principle for the law of the iterated logarithm. Z. Wahrsch. verw. Gebiete 3, 211-226.

    Article  MATH  MathSciNet  Google Scholar 

  20. Vervaat, W. (1972a): Success Epochs in Bernoulli Trials (with Applications in Number Theory). Mathematical Centre Tracts 42, Amsterdam.

    MATH  Google Scholar 

  21. Vervaat, W. (1972b): Functional central limit theorems for processes with positive drift and their inverses. Z. Wahrsch. verw. Gebiete 23, 245-253.

    Article  MATH  MathSciNet  Google Scholar 

  22. Whitt, W. (1980): Some useful functions for functional limit theorems. Math. Oper. Res. 5, 67-81.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Gut .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gut, A. (2009). Functional Limit Theorems. In: Stopped Random Walks. Springer Series in Operations Research and Financial Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87835-5_5

Download citation

Publish with us

Policies and ethics