Functional Limit Theorems

Part of the Springer Series in Operations Research and Financial Engineering book series (ORFE)


The classical central limit theorem was generalized to a functional central limit theorem by Donsker (1951) (see Theorem A.3.2). In words the result means that one considers the partial sums {S o, S 1,..., S n } of i.i.d. variables jointly for each n and shows that if the mean and variance are finite then the (polygonal) process obtained by normalization (and linear interpolation), behaves, asymptotically, like Brownian motion.


Passage Time Invariance Principle Iterate Logarithm Functional Central Limit Theorem Uniform Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. 34.
    Basu, A.K. (1972): Invariance theorems for first passage time random variables. Canad. Math. Bull. 15, 171-176.MATHMathSciNetGoogle Scholar
  2. 38.
    Billingsley, P. (1968): Convergence of Probability Measures. John Wiley, New York.MATHGoogle Scholar
  3. 39.
    Billingsley, P. (1999): Convergence of Probability Measures, 2nd ed. John Wiley, New York.MATHGoogle Scholar
  4. 40.
    Bingham, N.H. (1973): Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. verw. Gebiete 26, 273-296.MATHCrossRefMathSciNetGoogle Scholar
  5. 58.
    Chang, I.S. and Hsiung, CA. (1983): Strassen’s invariance principle for random subsequences. Z. Wahrsch. verw. Gebiete 64, 401-409.MATHCrossRefMathSciNetGoogle Scholar
  6. 95.
    Doney, R.A. (1982): On the existence of the mean ladder height for random walk. Z. Wahrsch. verw. Gebiete 59, 373-382.MATHCrossRefMathSciNetGoogle Scholar
  7. 130.
    Gut, A. (1973): A functional central limit theorem connected with extended renewal theory. Z. Wahrsch. verw. Gebiete 27, 123-129.MATHCrossRefMathSciNetGoogle Scholar
  8. 134.
    Gut, A. (1975a): Weak convergence and first passage times. J. Appl. Probab. 12, 324-332.MATHCrossRefMathSciNetGoogle Scholar
  9. 148.
    Gut, A. and Janson, S. (1983): The limiting behaviour of certain stopped sums and some applications. Scand. J. Statist. 10, 281-292.MATHMathSciNetGoogle Scholar
  10. 155.
    Hall, P. and Heyde, C.C. (1980): Martingale Limit Theory and Its Application. Academic Press, New York.MATHGoogle Scholar
  11. 165.
    Horváth, L. (1984b): Strong approximation of extended renewal processes. Ann. Probab. 12, 1149-1166.MATHCrossRefMathSciNetGoogle Scholar
  12. 166.
    Horvöth, L. (1984c): Strong approximation of certain stopped sums. Statist. Probab. Lett. 2, 181-185.CrossRefMathSciNetGoogle Scholar
  13. 168.
    Horvöth, L.(1986): Strong approximations of renewal processes and their applications. Acta Math. Acad. Sci. Hungar. 47, 13-28.CrossRefGoogle Scholar
  14. 172.
    Huggins, R.M. (1985): Laws of the iterated logarithm for time changed Brownian motion with an application to branching processes. Ann. Probab. 13, 1148-1156.MATHCrossRefMathSciNetGoogle Scholar
  15. 176.
    Iglehart, D.L. and Whitt, W. (1971): The equivalence of functional central limit theorems for counting processes and associated partial sums. Ann. Math. Statist. 42, 1372-1378.MATHCrossRefMathSciNetGoogle Scholar
  16. 178.
    Janson, S. (1983): Renewal theory for m-dependent variables. Ann. Probab. 11, 558-568.MATHCrossRefMathSciNetGoogle Scholar
  17. 210.
    Lindberger, K. (1978): Functional limit theorems for cumulative processes and stopping times. Z. Wahrsch. verw. Gebiete 44, 47-56.MATHCrossRefMathSciNetGoogle Scholar
  18. 250.
    Serfozo, R.F. (1975): Functional limit theorems for stochastic processes based on embedded processes. Adv. in Appl. Probab. 7, 123-139.MATHCrossRefMathSciNetGoogle Scholar
  19. 291.
    Strassen, V. (1964): An invariance principle for the law of the iterated logarithm. Z. Wahrsch. verw. Gebiete 3, 211-226.MATHCrossRefMathSciNetGoogle Scholar
  20. 306.
    Vervaat, W. (1972a): Success Epochs in Bernoulli Trials (with Applications in Number Theory). Mathematical Centre Tracts 42, Amsterdam.MATHGoogle Scholar
  21. 307.
    Vervaat, W. (1972b): Functional central limit theorems for processes with positive drift and their inverses. Z. Wahrsch. verw. Gebiete 23, 245-253.MATHCrossRefMathSciNetGoogle Scholar
  22. 313.
    Whitt, W. (1980): Some useful functions for functional limit theorems. Math. Oper. Res. 5, 67-81.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations