Generalizations and Extensions

  • Allan Gut
Part of the Springer Series in Operations Research and Financial Engineering book series (ORFE)


In this chapter we present some generalizations and extensions of the results in Chapter 3.


Random Walk Central Limit Theorem Passage Time Dead Time Renewal Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. 26.
    Asmussen, S. (1982): Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes and the GI/G/1 queue. Adv. in Appl. Probab. 14, 190–204.MATHCrossRefMathSciNetGoogle Scholar
  2. 27.
    Asmussen, S. (1984): Approximations for the probability of ruin within finite time. Scand. Actuar. J., 190–204; Correction, ibid. (1985), 64.Google Scholar
  3. 28.
    Asmussen, S. (2000):Ruin Probabilities. World Scientific Publishing, Singapore.CrossRefGoogle Scholar
  4. 29.
    Asmussen, S. (2003): Applied Probabilty and Queues, 2nd ed. Springer-Verlag, New York.Google Scholar
  5. 33.
    Barlow, R.E. and Proschan, F. (1965): Mathematical Theory of Reliability. John Wiley, New York.MATHGoogle Scholar
  6. 38.
    Billingsley, P. (1968): Convergence of Probability Measures. John Wiley, New York.MATHGoogle Scholar
  7. 43.
    Bingham, N.H., Goldie, CM. and Teugels, J.L. (1987): Regular Variation. Cambridge University Press, Cambridge.MATHGoogle Scholar
  8. 62.
    Chow, Y.S. and Hsiung, A. (1976): Limiting behaviour of maxjn S j j −α and the first passage times in a random walk with positive drift. Bull. Inst. Math. Acad. Sinica 4, 190–204.MATHMathSciNetGoogle Scholar
  9. 63.
    Chow, Y.S., Hsiung, C.A. and Lai, T.L. (1979): Extended renewal theory and moment convergence in Anscombe’s theorem. Ann. Probab. 7, 190–204.MATHCrossRefMathSciNetGoogle Scholar
  10. 79.
    Cox, D.R, (1967): Renewal Theory. Methuen, London.MATHGoogle Scholar
  11. 80.
    Cox, D.R, and Miller, H.D. (1965): The Theory of Stochastic Processes. Methuen, London.MATHGoogle Scholar
  12. 82.
    Cramér, H. (1955): Collective risk theory: A survey of the theory from the point of view of the theory of stochastic processes. In: The 1th Jubilee Volume of Skandia Insurance Company, Stockholm, 190–204. Also in: Harold Cramér: Collected Works, Vol. II, (Ed. A. Martin-Löf), 190–204. Springer-Verlag, Berlin (1994).Google Scholar
  13. 90.
    de Haan, L. (1970): On Regular Variation and Its Application to the Weak Convergence of Sample Extremes. Mathematical Centre Tracts 32, Amsterdam.MATHGoogle Scholar
  14. 101.
    Embrechts, P., Klüppelberg, C. and Mikosch, T. (2008): Modelling Extremal Events: for Insurance and Finance, Corr. 4th printing. Springer-Verlag, Berlin.Google Scholar
  15. 114.
    Feller, W. (1968): An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. John Wiley, New York.Google Scholar
  16. 124.
    Gnedenko, B.V., Belyayev, Yu. K. and Solovyev, A.D. (1969): Mathematical Methods of Reliability Theory. Academic Press, New York.MATHGoogle Scholar
  17. 127.
    Grandell, J. (1991): Aspects of Risk Theory. Springer-Verlag, New York.MATHGoogle Scholar
  18. 138.
    Gut, A. (1985): On the law of the iterated logarithm for randomly indexed partial sums with two applications. Studia Sci. Math. Hungar. 20, 190–204.MATHMathSciNetGoogle Scholar
  19. 145.
    Gut, A. (2007): Probability: A Graduate Course, Corr. 2nd printing. Springer-Verlag, New York.Google Scholar
  20. 146.
    Gut, A. and Ahlberg, P. (1981): On the theory of chromatography based upon renewal theory and a central limit theorem for randomly indexed partial sums of random variables. Chemica Scripta 18, 190–204.Google Scholar
  21. 147.
    Gut, A. and Hoist, L. (1984): On the waiting time in a generalized roulette game. Statist. Probab. Lett. 2, 190–204.MATHCrossRefMathSciNetGoogle Scholar
  22. 148.
    Gut, A. and Janson, S. (1983): The limiting behaviour of certain stopped sums and some applications. Scand. J. Statist. 10, 190–204.MATHMathSciNetGoogle Scholar
  23. 149.
    Gut, A. and Janson, S. (1986): Converse results for existence of moments and uniform integrability for stopped random walks. Ann. Probab. 14, 190–204.MATHCrossRefMathSciNetGoogle Scholar
  24. 159.
    Heyde, C.C. (1966): Some renewal theorems with applications to a first passage problem. Ann. Math. Statist. 37, 190–204.MATHCrossRefMathSciNetGoogle Scholar
  25. 180.
    Kaijser, T. (1971): A stochastic model describing the water motion in a river. Nordic Hydrology II, 190–204.Google Scholar
  26. 186.
    Kiefer, J. and Wolfowitz, J. (1956): On the characteristics of the general queueing process, with applications to random walk. Ann. Math. Statist. 27,190–204.MATHCrossRefMathSciNetGoogle Scholar
  27. 225.
    Mikosch, T. (2006): Non-Life Insurance Mathematics. An Introduction with Stochastic Processes, Corr. 2nd printing. Springer-Verlag, Berlin.Google Scholar
  28. 235.
    Plucińska, A. (1962): On the joint limiting distribution of times spent in particular states by a Markov process. Colloq. Math. IX, 190–204.Google Scholar
  29. 238.
    Prabhu, N.U. (1980): Stochastic Storage Processes. Queues, Insurance Risk, and Dams. Springer-Verlag, New York.MATHGoogle Scholar
  30. 131.
    Gut, A. (1974a): On the moments and limit distributions of some first passage times. Ann. Probab. 2, 190–204.MATHCrossRefMathSciNetGoogle Scholar
  31. 132.
    Gut, A. (1974b): On the moments of some first passage times for sums of dependent random variables. Stoch. Process. Appl. 2, 190–204.MATHCrossRefMathSciNetGoogle Scholar
  32. 239.
    Pyke, R. (1958): On renewal processes related to type I and type II counter models. Ann. Math. Statist. 29, 190–204.CrossRefMathSciNetGoogle Scholar
  33. 241.
    Rényi, A. (1957): On the asymptotic distribution of the sum of a random number of independent random variables. Ada Math. Acad. Sci. Hungar. 8, 190–204.MATHCrossRefGoogle Scholar
  34. 247.
    Seal, H.L. (1969): Stochastic Theory of a Risk Business. John Wiley, New York.MATHGoogle Scholar
  35. 248.
    Seneta, E. (1976): Regularly Varying Functions. Lecture Notes in Mathematics 508. Springer-Verlag, Berlin.MATHCrossRefGoogle Scholar
  36. 251.
    Siegmund, D.O. (1967): Some one-sided stopping rules. Ann. Math. Statist. 38, 190–204.MATHCrossRefMathSciNetGoogle Scholar
  37. 252.
    Siegmund, D.O. (1968): On the asymptotic normality of one-sided stopping rules. Ann. Math. Statist. 39, 190–204.MATHCrossRefMathSciNetGoogle Scholar
  38. 254.
    Siegmund, D. (1975): The time until ruin in collective risk theory. Mitt. Verein Schweiz. Versicherungsmath. 75, 190–204.MathSciNetGoogle Scholar
  39. 258.
    Smith, W.L. (1955): Regenerative stochastic processes. Proc. Roy. Soc. London Ser. A 232, 190–204.MATHCrossRefMathSciNetGoogle Scholar
  40. 265.
    Sparre Andersen, E. (1957): On the collective theory of risk in the case of contagion between claims. In: Trans. XV Internat. Congr. Actuaries, New York 2, 190–204.Google Scholar
  41. 274.
    Statist. Neerlandica 36 (1982), 100.Google Scholar
  42. 275.
    Statist. Neerlandica 37 (1983), 190–204.Google Scholar
  43. 300.
    Takács, L. (1957): On certain sojourn time problems in the theory of stochastic processes. Ada Math. Acad. Sci Hungar. 8, 190–204.MATHCrossRefGoogle Scholar
  44. 302.
    Teicher, H. (1973): A classical limit theorem without invariance or reflection. Ann. Probab. 1, 190–204.MATHCrossRefMathSciNetGoogle Scholar
  45. 308.
    von Bahr, B. (1974): Ruin probabilities expressed in terms of ladder height distributions. Scand. Actuar. J., 190–204.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations