Renewal Processes and Random Walks

  • Allan GutEmail author
Part of the Springer Series in Operations Research and Financial Engineering book series (ORFE)


In the first chapter we stated and proved various limit theorems for stopped random walks. These limit theorems shall, in subsequent chapters, be used in order to obtain results for random walks stopped according to specific stopping procedures as well as for the families of stopping times (random indices) themselves. However, before doing so we shall, in this chapter, survey some of the basic facts about random walks.


Random Walk Renewal Process Simple Random Walk Residual Lifetime Renewal Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. 22.
    Anderson, K.K. and Athreya, K.B. (1987): A renewal theorem in the infinite mean case. Ann. Probab. 15, 388-393.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 24.
    Arjas, E., Nummelin, E. and Tweedie, R.L. (1978): Uniform limit theorems for non-singular renewal and Markov renewal processes. J. Appl. Probab. 15, 112-125.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 28.
    Asmussen, S. (2000):Ruin Probabilities. World Scientific Publishing, Singapore.CrossRefGoogle Scholar
  4. 29.
    Asmussen, S. (2003): Applied Probabilty and Queues, 2nd ed. Springer-Verlag, New York.Google Scholar
  5. 30.
    Athreya, K., Me Donald, D. and Ney, P. (1978): Coupling and the renewal theorem. Amer. Math. Monthly 85, 809-814.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 37.
    Bickel, P.J. and Yahav, J.A. (1965): Renewal theory in the plane. Ann. Math. Statist. 36, 946-955.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 53.
    Carlsson, H. (1982): Error estimates in d-dimensional renewal theory. Compositio Math. 46, 227-253.zbMATHMathSciNetGoogle Scholar
  8. 56.
    Carlsson, H. and Wainger, S. (1984): On the multi-dimensional renewal theorem. J. Math. Anal. Appl. 100, 316-322.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 60.
    Choquet, G. and Deny, J. (1960): Sur l’équation de convolution μ= μ * σ. C.R. Acad. Sci. Paris 250, 799-801.zbMATHMathSciNetGoogle Scholar
  10. 66.
    Chow, Y.S. and Lai, T.L. (1979): Moments of ladder variables for driftless random walks. Z. Wahrsch. verw. Gebiete 48, 253-257.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 71.
    Chung, K.L. (1948): Asymptotic distribution of the maximum cumulative sum of independent random variables. Bull. Amer. Math. Soc. 54, 1162-1170.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 72.
    Chung, K.L. (1952): On the renewal theorem in higher dimensions. Skand. Aktuarietidskr. 35, 188-194.MathSciNetGoogle Scholar
  13. 73.
    Chung, K.L. (1974): A Course in Probability Theory, 2nd ed. Academic Press, New York.zbMATHGoogle Scholar
  14. 74.
    Chung, K.L. and Fuchs, W.H.J. (1951): On the distribution of values of sums of random variables. Mem. Amer. Math. Soc. 6.Google Scholar
  15. 75.
    Chung, K.L. and Ornstein, D. (1962): On the recurrence of sums of random variables. Bull. Amer. Math. Soc. 68, 30-32.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 78.
    Çinlar, E. (1975): Introduction to Stochastic Processes. Prentice Hall, Englewood Cliffs, N.J.zbMATHGoogle Scholar
  17. 79.
    Cox, D.R, (1967): Renewal Theory. Methuen, London.zbMATHGoogle Scholar
  18. 93.
    Doney, R.A. (1966): An analogue of the renewal theorem in higher dimensions. Proc. London Math. Soc. (3) 16, 669-684.CrossRefMathSciNetGoogle Scholar
  19. 94.
    Doney, R.A. (1980): Moments of ladder heights in random walks. J. Appl. Probab. 17, 248-252.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 95.
    Doney, R.A. (1982): On the existence of the mean ladder height for random walk. Z. Wahrsch. verw. Gebiete 59, 373-382.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 97.
    Doob, J.L. (1948): Renewal theory from the point of view of the theory of probability. Trans. Amer. Math. Soc. 63, 422-438.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 99.
    Doob, J.L., Snell, J.L. and Williamson, R.E. (1960): Applications of boundary theory to sums of independent random variables. In: Contributions to Probability and Statistics. Essays in honor of Harold Hotelling (Eds. Ingram Olkin et al.), 182-197. Stanford University Press, Stanford, CA.Google Scholar
  23. 102.
    Englund, G. (1980): Remainder term estimate for the asymptotic normality of the number of renewals. J. Appl. Probab. 17, 1108-1113.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 103.
    Erdős, P. (1949): On a theorem of Hsu and Robbins. Ann. Math. Statist. 20, 286-291.CrossRefGoogle Scholar
  25. 105.
    Erdős, P., Feller, W. and Pollard, H. (1949): A theorem on power series. Bull. Amer. Math. Soc. 55, 201-204.CrossRefMathSciNetGoogle Scholar
  26. 106.
    Erdős, P. and Kac, M. (1946): On certain limit theorems of the theory of probability. Bull. Amer. Math. Soc. 52, 292-302.CrossRefMathSciNetGoogle Scholar
  27. 108.
    Erickson, K.B. (1970): Strong renewal theorems with infinite mean. Trans. Amer. Math. Soc. 151, 263-291.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 110.
    Farrell, R.H. (1964): Limit theorems for stopped random walks. Ann. Math. Statist. 35, 1332-1343.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 111.
    Farrell, R.H. (1966): Limit theorems for stopped random walks III. Ann. Math. Statist. 37, 1510-1527.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 112.
    Feller, W. (1941): On the integral equation of renewal theory. Ann. Math. Statist. 12, 243-267.zbMATHCrossRefMathSciNetGoogle Scholar
  31. 113.
    Feller, W. (1949): Fluctuation theory and recurrent events. Trans. Amer. Math. Soc. 67, 98-119.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 114.
    Feller, W. (1968): An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. John Wiley, New York.Google Scholar
  33. 115.
    Feller, W. (1971): An Introduction of Probability Theory and Its Applications, Vol. 2, 2nd ed. John Wiley, New York.Google Scholar
  34. 120.
    Gafurov, M.U. (1980): On the first exit time of a multidimensional random walk from expanding sets. Soviet Math. Dokl. 22, 492-493.zbMATHGoogle Scholar
  35. 121.
    Garsia, A.M. (1973): Martingale Inequalities: Seminar Notes on R.ecent Progress. Benjamin, Reading. MA.Google Scholar
  36. 144.
    Gut, A. (2001): Convergence rates in the central limit theorem for multidimensionally indexed random variables. Studia Sci. Math. Hungar. 37, 401-418.zbMATHMathSciNetGoogle Scholar
  37. 145.
    Gut, A. (2007): Probability: A Graduate Course, Corr. 2nd printing. Springer-Verlag, New York.Google Scholar
  38. 157.
    Hatōri, H. (1959): Some theorems in an extended renewal theory I. Kōdai Math. Sem. Rep. 11, 139-146.zbMATHCrossRefGoogle Scholar
  39. 159.
    Heyde, C.C. (1966): Some renewal theorems with applications to a first passage problem. Ann. Math. Statist. 37, 699-710.zbMATHCrossRefMathSciNetGoogle Scholar
  40. 173.
    Hunter, J.J. (1974a): Renewal theory in two dimensions: Basic results. Adv. in Appl. Probab. 6, 376-391.zbMATHCrossRefMathSciNetGoogle Scholar
  41. 174.
    Hunter, J.J. (1974b): Renewal theory in two dimensions: Asymptotic results. Adv. in Appl. Probab. 6, 546-562.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 175.
    Hunter, J.J. (1977): Renewal theory in two dimensions: Bounds on the renewal function. Adv. in Appl. Probab. 9, 527-541.zbMATHCrossRefMathSciNetGoogle Scholar
  43. 177.
    Jagers, P. (1975): Branching Processes with Biological Applications. John Wiley, New York.zbMATHGoogle Scholar
  44. 179.
    Janson, S. (1986): Moments for first passage and last exit times, the minimum and related quantities for random walks with positive drift. Adv. in Appl. Probab. 18, 865-879zbMATHCrossRefMathSciNetGoogle Scholar
  45. 184.
    Kemperman, J.H.B. (1961): The Passage Problem for a Stationary Markov Chain. University of Chicago Press, Chicago, IL.Google Scholar
  46. 185.
    Kesten, H. (1974): Renewal theory for functionals of a Markov chain with general state space. Ann. Probab. 2, 355-386.zbMATHCrossRefMathSciNetGoogle Scholar
  47. 189.
    Kolmogorov, A.N. (1936): Anfangsgründe der Theorie der Markoffschen Ketten mit unendlich vielen möglichen Zuständen. Mat. Sb. (N.S.) 1, 607-610.zbMATHGoogle Scholar
  48. 193.
    Lai, T.L. (1976): Asymptotic moments of random walks with applications to ladder variables and renewal theory. Ann. Probab. 4, 51-66.zbMATHCrossRefGoogle Scholar
  49. 201.
    Lalley, S.P. (1984b): Conditional Markov renewal theory I. Finite and denumerable state space. Ann. Probab. 12, 1113-1148.zbMATHCrossRefMathSciNetGoogle Scholar
  50. 202.
    Lalley, S.P. (1986): Renewal theorem for a class of stationary sequences. Probab. Th. Rel. Fields 72, 195-213.zbMATHCrossRefMathSciNetGoogle Scholar
  51. 203.
    Lamperti, J. (1958): Some limit theorems for stochastic processes. J. Math. Mech. 7, 433-448.zbMATHMathSciNetGoogle Scholar
  52. 204.
    Lamperti, J. (1961): A contribution to renewal theory. Proc. Amer. Math. Soc. 12, 724-731.zbMATHCrossRefMathSciNetGoogle Scholar
  53. 212.
    Lindvall, T. (1977): A probabilistic proof of Blackwell’s renewal theorem. Ann. Probab. 5, 482-485.zbMATHCrossRefMathSciNetGoogle Scholar
  54. 213.
    Lindvall, T. (1979): On coupling of discrete renewal processes. Z. Wahrsch. verw. Gebiete 48, 57-70.zbMATHCrossRefMathSciNetGoogle Scholar
  55. 214.
    Lindvall, T. (1982): On coupling of continuous-time renewal processes. J. Appl. Probab. 19, 82-89.zbMATHCrossRefMathSciNetGoogle Scholar
  56. 215.
    Lindvall, T. (1986): On coupling of renewal processes with use of failure rates. Stoch. Process. Appl. 22, 1-15.zbMATHCrossRefMathSciNetGoogle Scholar
  57. 224.
    Meyer, P.A. (1966): Probability and Potential. Waltham, Blaisdell.Google Scholar
  58. 226.
    Mohan, N.R. (1976): Teugels’ renewal theorem and stable laws. Ann. Probab. 4, 863-868.zbMATHCrossRefMathSciNetGoogle Scholar
  59. 227.
    Nagaev, A.V. (1979): Renewal theorems in R d. Theory Probab. Appl. XXIV, 572-581.Google Scholar
  60. 229.
    Ney, P. (1981): A refinement of the coupling method in renewal theory. Stock. Process. Appl. 11, 11-26.zbMATHCrossRefMathSciNetGoogle Scholar
  61. 231.
    Niculescu, S.P. (1979): Extension of a renewal theorem. Bull. Math. Soc. Sci. Math. R.S. Roumanie 23, 289-292.MathSciNetGoogle Scholar
  62. 237.
    Prabhu, N.U. (1965): Stochastic Processes. Macmillan, New York.Google Scholar
  63. 246.
    Rosén, B. (1961): On the asymptotic distribution of sums of independent identically distributed random variables. Ark. Mat. 4, 323-332.CrossRefGoogle Scholar
  64. 249.
    Serfozo, R.F. (1974): Large deviations of renewal process. Stoch. Process. Appl. 2, 295-301.zbMATHCrossRefMathSciNetGoogle Scholar
  65. 257.
    Smith, W.L. (1954): Asymptotic renewal theorems. Proc. Bay. Soc. Edinburgh Sect. A 64, 9-48.zbMATHGoogle Scholar
  66. 258.
    Smith, W.L. (1955): Regenerative stochastic processes. Proc. Roy. Soc. London Ser. A 232, 6-31.zbMATHCrossRefMathSciNetGoogle Scholar
  67. 259.
    Smith, W.L. (1958): Renewal theory and its ramifications. J. Roy. Statist. Soc. Ser. B 20, 243-302.MathSciNetGoogle Scholar
  68. 267.
    Spitzer, F. (1960): A Tauberian theorem and its probability interpretation. Trans. Amer. Math. Soc. 94, 150-169.zbMATHCrossRefMathSciNetGoogle Scholar
  69. 268.
    Spitzer, F. (1965): Renewal theory for Markov chains. In: Proc. Fifth Berkeley Symp. Math. Statist, and Probability, Vol. II/II, 311-320. University of California Press, Berkeley, CA.Google Scholar
  70. 269.
    Spitzer, F. (1976): Principles of Random Walk, 2nd ed. Springer-Verlag, New York.zbMATHGoogle Scholar
  71. 271.
    Stam, A.J. (1968): Two theorems in r-dimensional renewal theory. Z. Wahrsch. verw. Gebiete 10, 81-86.zbMATHCrossRefMathSciNetGoogle Scholar
  72. 272.
    Stam, A.J. (1969): Renewal theory in r dimensions I. Compositio Math. 21, 383-399.zbMATHMathSciNetGoogle Scholar
  73. 273.
    Stam, A.J. (1971): Renewal theory in r dimensions II. Compositio Math. 23, 1-13.zbMATHMathSciNetGoogle Scholar
  74. 299.
    Takács, L. (1956): On a probability problem arising in the theory of counters. Proc. Cambridge Philos. Soc. 52, 488-498.zbMATHCrossRefMathSciNetGoogle Scholar
  75. 303.
    Teugels, J.L. (1968): Renewal theorems when the first or the second moment is infinite. Ann. Math. Statist. 39, 1210-1219.zbMATHCrossRefMathSciNetGoogle Scholar
  76. 304.
    Thorisson, H. (1987): A complete coupling proof of Blackwell’s renewal theorem. Stoch. Process. Appl. 26, 87-97.zbMATHCrossRefMathSciNetGoogle Scholar
  77. 309.
    Wald, A. (1947): Limit distribution of the maximum and minimum of successive cumulative sums of random variables. Bull. Amer. Math. Soc. 53, 142-153.zbMATHCrossRefMathSciNetGoogle Scholar
  78. 316.
    Williamson, J.A. (1968): Random walks and Riesz kernels. Pacific J. Math. 25, 393-415.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations