Service Network Design: With Arnt-Gunnar Lium and Teodor Gabriel Crainic

  • Alan J. King
  • Stein W. Wallace
Part of the Springer Series in Operations Research and Financial Engineering book series (ORFE)


This chapter represents an investigation following the lines of this book, where the focus is that of a graduate student studying the effects of uncertainty on a specific problem. There is no customer in this problem, and it has not reached the level of sophistication needed for a real application. However, it goes to the heart of this book: What does stochastics do to my problem? What are the implicit options? This chapter is based on the Ph.D. thesis of Arnt-Gunnar Lium of Molde University College. For an overview see [40]. You are going to meet an inherently two-stage problem with, principally, infinitely many stages. However, since in this situation we do not really need the decisions of the inherent second stage, we can approximate, ending up with a two-stage model. In our view, this points to the heart of stochastic programming: inherently two-stage problems with rather complicated stages after the first one.


Deterministic Model Stochastic Programming Mixed Case Scenario Tree Deterministic Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Laurent El Ghaoui Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization. Princeton Series in Applied Mathematics. Princeton University Press, 2009.Google Scholar
  2. 2.
    M. Ball, C. Barnhart, G. Nemhauser, and A. Odoni. Air transportation: Irregular operations and control. In C. Barnhart and G. Laporte, editors, Transportation, number 14 in Handbooks in Operations Research and Management Science, chapter 1, pages 1–67. Elsevier, 2007.Google Scholar
  3. 3.
    Güzin Bayraksan and David P. Morton. Assessing solution quality in stochastic programs. Mathematical Programming, 108(2–3):495–514, sep 2006. doi: 10.1007/s10107-006-0720-x.Google Scholar
  4. 4.
    Güzin Bayraksan and David P. Morton. A sequential sampling procedure for stochastic programming. Operations Research, 59(4):898–913, 2011. doi: 10.1287/opre.1110.0926.Google Scholar
  5. 5.
    Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations Research, 52 (1):35–53, 2004.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    John R. Birge. Option methods for incorporating risk into linear capacity planning models. Manufacturing & Service Operations Management, 2(1):19–31, 2000.CrossRefGoogle Scholar
  7. 7.
    John R. Birge and François Louveaux. Introduction to Stochastic Programming. Springer, Berlin Heidelberg New York, 1997.MATHGoogle Scholar
  8. 8.
    George B. Dantzig and Gerd Infanger. Large-scale stochastic linear programs—importance sampling and Benders decomposition. In Computational and applied mathematics, I (Dublin, 1991), pages 111–120. North-Holland, Amsterdam, 1992.Google Scholar
  9. 9.
    Jitka Dupačová and Werner Römisch. Quantitative stability for scenario-based stochastic programs. In Marie Hušková, Petr Lachout, and Jan Ámos Víšek, editors, Prague Stochastics ’98, pp 119–124. JČMF, 1998.Google Scholar
  10. 10.
    Jitka Dupačová, Nicole Gröwe-Kuska, and Werner Römisch. Scenario reduction in stochastic programming: An approach using probability metrics. Mathematical Programming, 95(3):493–511, 2003. doi: 10.1007/s10107-002-0331-0.Google Scholar
  11. 11.
    M. Ehrgott and D.M. Ryan. Constructing robust crew schedules with bicriteria optimization. Journal of Multi-Criteria Decision Analysis, 11(3):139–150, 2002.MATHCrossRefGoogle Scholar
  12. 12.
    Matthias Ehrgott and David M. Ryan. The method of elastic constraints for multiobjective combinatorial optimization and its application in airline crew scheduling. In T. Tanino, T. Tanaka, and M. Inuiguchi, editors, Multi-Objective Programming and Goal Programming – Theory and Applications, pages 117–122. Springer, Berlin Heidelberg New York, 2003.Google Scholar
  13. 13.
    Y. Ermoliev. Stochastic quasigradient methods and their application to system optimization. Stochastics, 9:1–36, 1983.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Olga Fiedler and Werner Römisch. Stability in multistage stochastic programming. Annals of Operations Research, 56(1):79–93, 2005. doi: 10.1007/BF02031701.Google Scholar
  15. 15.
    K. Froot and J. Stein. Risk management, capital budgeting and capital structure policy for financial institutions: An integrated approach. Journal of Financial Economics, 47:55–82, 1998.CrossRefGoogle Scholar
  16. 16.
    A. Gaivoronski. Stochastic quasigradient methods and their implementation. In Numerical techniques for stochastic optimization, volume 10 of Springer Ser. Comput. Math., pp 313–351. Springer, Berlin Heidelberg New York, 1988.Google Scholar
  17. 17.
    V. Gaur and S. Seshadri. Hedging inventory risk through market instruments. Manufacturing and Service Operations Management, 7(2):103–120, 2005.CrossRefGoogle Scholar
  18. 18.
    R.C. Grinold. Model building techniques for the correction of end effects in multistage convex programs. Operations Research, 31(4):407–431, 1983.MATHCrossRefGoogle Scholar
  19. 19.
    J. Michael Harrison and Stanley R. Pliska. Martingales and stochastic integrals in the theory of continuous time trading. Stochastic Processes and Their Applications, 11:215–260, 1981.Google Scholar
  20. 20.
    H. Heitsch and W. Römisch. Scenario reduction algorithms in stochastic programming. Computational Optimization and Applications, 24(2–3):187–206, 2003. doi: 10.1023/A:1021805924152.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    H. Heitsch, W. Römisch, and C. Strugarek. Stability of multistage stochastic programs. SIAM Journal on Optimization, 17(2):511–525, 2006. doi: 10.1137/050632865.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Holger Heitsch and Werner Römisch. A note on scenario reduction for two-stage stochastic programs. Operations Research Letters, 35(6):731–738, 2007. doi: 10.1016/j.orl.2006.12.008.Google Scholar
  23. 23.
    Holger Heitsch and Werner Römisch. Scenario tree reduction for multistage stochastic programs. Computational Management Science, 6(2):117–133, 2009. doi: 10.1007/s10287-008-0087-y.Google Scholar
  24. 24.
    J. L. Higle and S. Sen. Stochastic decomposition: An algorithm for two-stage linear programs with recourse. Mathematics of Operations Research, 16:650–669, 1991.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    J. L. Higle and S. Sen. Statistical verification of optimality conditions for stochastic programs with recourse. Annals of Operations Research, 30:215–240, 1991.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    J. L. Higle and S. W. Wallace. Sensitivity analysis and uncertainty in linear programming. Interfaces, 33:53–60, 2003.CrossRefGoogle Scholar
  27. 27.
    K. Høyland and S. W. Wallace. Generating scenario trees for multistage decision problems. Management Science, 47(2):295–307, 2001. doi: 10.1287/mnsc. Scholar
  28. 28.
    Kjetil Høyland, Michal Kaut, and Stein W. Wallace. A heuristic for moment-matching scenario generation. Computational Optimization and Applications, 24(2–3):169–185, 2003. ISSN 0926-6003.Google Scholar
  29. 29.
    Gerd Infanger. Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic linear programs. Annals of Operations Research, 39(1–4): 69–95 (1993), 1992. ISSN 0254-5330.Google Scholar
  30. 30.
    P. Kall and S.W. Wallace. Stochastic Programming. Wiley, Chichester, 1994.MATHGoogle Scholar
  31. 31.
    Michal Kaut and Stein W. Wallace. Evaluation of scenario-generation methods for stochastic programming. Pacific Journal of Optimization, 3(2):257–271, 2007.MathSciNetMATHGoogle Scholar
  32. 32.
    Michal Kaut and Stein W. Wallace. Shape-based scenario generation using copulas. Computational Management Science, 8(1–2):181–199, 2011. doi: 10.1007/s10287-009-0110-y.Google Scholar
  33. 33.
    Michal Kaut, Stein W. Wallace, Hercules Vladimirou, and Stavros Zenios. Stability analysis of portfolio management with conditional value-at-risk. Quantitative Finance, 7(4):397–409, 2007. doi: 10.1080/14697680701483222.Google Scholar
  34. 34.
    A. J. King. Asymmetric risk measures and tracking models for portfolio optimization under uncertainty. Annals of Operations Research, 45:165–177, 1993.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Alan J. King. Duality and martingales: A stochastic programming perspective on contingent claims. Mathematical Programming, 91(3):543–562, 2002.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Alan J. King, Teemu Pennanen, and Matti Koivu. Calibrated option bounds. International Journal of Theoretical and Applied Finance, 8:141–159, 2005.MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Alan J. King, Olga Streltchenko, and Yelena Yesha. Private valuation of contingent claims in a discrete time/state model. In John B. Guerard, editor, Handbook of Portfolio Construction: Contemporary Applications, pp 691–710. Springer, Berlin Heidelberg New York, 2010.Google Scholar
  38. 38.
    Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sample average approximation method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2):479–502, 2001. doi: 10.1137/S1052623499363220.Google Scholar
  39. 39.
    A. G. Kök, M.L. Fisher, and R. Vaidyanathan. Assortment planning: Review of literature and industry practice. In N. Agrawal and S.A. Smith, editors, Retail Supply Chain Management, pp 99–154. Springer, Berlin Heidelberg New York, 2008.CrossRefGoogle Scholar
  40. 40.
    A.-G. Lium, T. G. Crainic, and S. W. Wallace. A study of demand stochasticity in stochastic network design. Transportation Science, 43(2):144–157, 2009. doi: 10.1287/trsc.1090.0265.CrossRefGoogle Scholar
  41. 41.
    Leonard C. MacLean, Edward O. Thorp, and William T. Ziemba. The Kelly capital growth investment criterion: Theory and practice. Handbook in Financial Economics. World Scientific, Singapore, 2011.Google Scholar
  42. 42.
    S. Mahajan and G. van Ryzin. Retail inventories and consumer choice. In S. Tayur, R. Ganesham, and M. Magasine, editors, Quantitative methods in Supply Chain Management. Kluwer, Amsterdam, 1998.Google Scholar
  43. 43.
    W.K. Mak, D.P. Morton, and R.K. Wood. Monte carlo bounding techniques for determining solution quality in stochastic programs. Operations Research Letters, 24: 47–56, 1999.MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    H.M. Markowitz. Portfolio selection: Efficient diversification of investment. Yale University Press, New Haven, CT, 1959.Google Scholar
  45. 45.
    G. C. Pflug. Scenario tree generation for multiperiod financial optimization by optimal discretization. Mathematical Programming, 89(2):251–271, 2001. doi: 10.1007/PL00011398.MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    András Prékopa. Stochastic programming, vol 324. Mathematics and Its Applications. Kluwer, Dordrecht, 1995. ISBN 0-7923-3482-5.Google Scholar
  47. 47.
    J. M. Rosenberger, E. L. Johnson, and G. L. Nemhauser. A robust fleet-assignment model with hub isolation and short cycles. Transportation Science, 38(3):357–368, 2004.CrossRefGoogle Scholar
  48. 48.
    Andrej Ruszczynski and Alexanger Shapiro. Stochastic Programming. Handbooks in Operations Research and Management Science. Elsevier, Amsterdam, 2002.Google Scholar
  49. 49.
    Alexander Shapiro. Monte carlo sampling approach to stochastic programming. ESAIM: Proceedings, 13: 65–73, 2003. doi: 10.1051/proc:2003003. Proceedings of 2003 MODE-SMAI Conference.Google Scholar
  50. 50.
    Alexander Shapiro. Monte Carlo sampling methods. In A. Ruszczyński and A. Shapiro, editors, Stochastic Programming, volume 10 of Handbooks in Operations Research and Management Science, chapter 6, pp 353–425. Elsevier, Amsterdam, 2003. doi: 10.1016/S0927-0507(03)10006-0.Google Scholar
  51. 51.
    Gordon Sick. Real options. In Finance, vol 9. Handbooks in Operations Research and Management Science, chap 21, pp 631–691. Elsevier, Amsterdam, 1995.Google Scholar
  52. 52.
    J.W. Suurballe and Robert E. Tarjan. A quick method for finding shortest pairs of paths. Networks, 14:325–336, 1984.Google Scholar
  53. 53.
    Hajnalka Vaagen and Stein W. Wallace. Product variety arising from hedging in the fashion supply chains. International Journal of Production Economics, 114(2):431–455, 2008. doi: 10.1016/j.ijpe.2007.11.013.Google Scholar
  54. 54.
    J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior, 2nd edn. Princeton University Press, Princeton, NJ, 1947.MATHGoogle Scholar
  55. 55.
    S.W. Wallace. Decision making under uncertainty: Is sensitivity analysis of any use? Operations Research, 48:20–25, 2000.CrossRefGoogle Scholar
  56. 56.
    S.W. Wallace and W.T. Ziemba, editors. Applications of Stochastic Programming. MPS-SIAM Series on Optimization, Philadelphia, 2005.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Alan J. King
    • 1
  • Stein W. Wallace
    • 2
  1. 1.T.J. Watson Research Center IBM CorporationYorktown HeightsUSA
  2. 2.Department of Management ScienceLancaster University Management SchoolLancasterUK

Personalised recommendations