Skip to main content

Image Representation

  • Chapter
  • First Online:
Generalized Principal Component Analysis

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 40))

  • 9595 Accesses

Abstract

In this and the following chapters, we demonstrate why multiple subspaces can be a very useful class of models for image processing and how the subspace clustering techniques may facilitate many important image processing tasks, such as image representation, compression, image segmentation, and video segmentation.

Everything should be made as simple as possible, but not simpler.

—Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Which involves further quantization and entropy coding of the so-obtained sparse signals α.

  2. 2.

    A topic we will study in more detail from the compression perspective in the next section.

  3. 3.

    Here, “optimality” means that the transformation achieves the optimal asymptotic for approximating the class of functions considered (DeVore 1998).

  4. 4.

    Here, in contrast to the case of pre-fixed transformations, “optimality” means the representation obtained is the optimal one within the class of models considered, in the sense that it minimizes certain discrepancies between the model and the data.

  5. 5.

    In fact, in the VQ model, the coefficients are assumed to be binary.

  6. 6.

    Be aware that compared to methods in the first category, representations in this category typically need additional memory to store the information about the resulting model itself, e.g., the basis of the subspace in PCA, the cluster means in VQ.

  7. 7.

    Therefore, b needs to be a common divisor of W and H.

  8. 8.

    Here by default, the peak value of the imagery data is normalized to 1.

  9. 9.

    Notice that to represent a d-dimensional subspace in a D-dimensional space, we need only specify a basis of d linearly independent vectors for the subspace. We may stack these vectors as rows of a \(d \times D\) matrix. Any nonsingular linear transformation of these vectors span the same subspace. Thus, without loss of generality, we may assume that the matrix is of the normal form \([I_{d\times d},G]\), where G is a \(d \times (D - d)\) matrix consisting of the so-called Grassmannian coordinates.

  10. 10.

    Notice that if one uses a preselected basis, such as discrete Fourier transform, discrete cosine transform (JPEG), or wavelets (JPEG-2000), there is no such overhead.

  11. 11.

    We also need a very small number of binary bits to store the membership of the vectors. But those extra bits are insignificant compared to \(\Omega \) and often can be ignored.

  12. 12.

    In fact, the minimal \(\Omega \) can also be associated with the Kolmogorov entropy or with the minimum description length (MDL) of the imagery data.

  13. 13.

    For instance, if we take all the \(b \times b\) blocks and scramble them arbitrarily, the scrambled image would be fit equally well by the same hybrid linear model for the original image.

  14. 14.

    This is not to be confused with the subscript i used to indicate different segments \(\mathcal{I}_{i}\) of an image.

References

  • Bruckstein, A., Donoho, D., & Elad, M. (2009). From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1), 34–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Burt, P. J., & Adelson, E. H. (1983). The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4), 532–540.

    Article  Google Scholar 

  • Candès, E. (2006). Compressive sampling. In Proceedings of the International Congress of Mathematics.

    Google Scholar 

  • Candès, E., & Donoho, D. (2002). New tight frames of curvelets and optimal representations of objects with smooth singularities. Technical Report. Stanford University.

    MATH  Google Scholar 

  • Candès, E., & Wakin, M. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.

    Article  Google Scholar 

  • Chen, J.-Q., Pappas, T. N., Mojsilovic, A., & Rogowitz, B. E. (2003). Image segmentation by spatially adaptive color and texture features. In IEEE International Conference on Image Processing.

    Google Scholar 

  • Chen, S., Donoho, D., & Saunders, M. (1998). Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing, 20(1), 33–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Coifman, R., & Wickerhauser, M. (1992). Entropy-based algorithms for best bases selection. IEEE Transactions on Information Theory, 38(2), 713–718.

    Article  MATH  Google Scholar 

  • Delsarte, P., Macq, B., & Slock, D. (1992). Signal-adapted multiresolution transform for image coding. IEEE Transactions on Information Theory, 38, 897–903.

    Article  Google Scholar 

  • DeVore, R. (1998). Nonlinear approximation. Acta Numerica, 7, 51–150.

    Article  MathSciNet  MATH  Google Scholar 

  • DeVore, R., Jawerth, B., & Lucier, B. (1992). Image compression through wavelet transform coding. IEEE Transactions on Information Theory, 38(2), 719–746.

    Article  MathSciNet  MATH  Google Scholar 

  • Do, M. N., & Vetterli, M. (2002). Contourlets: A directional multiresolution image representation. In IEEE International Conference on Image Processing.

    Google Scholar 

  • Donoho, D. (1995). Cart and best-ortho-basis: A connection. Manuscript.

    MATH  Google Scholar 

  • Donoho, D. (1998). Sparse components analysis and optimal atomic decomposition. Technical Report, Department of Statistics, Stanford University.

    Google Scholar 

  • Donoho, D. L. (1999). Wedgelets: Nearly-minimax estimation of edges. Annals of Statistics, 27, 859–897.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., & Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proceedings of National Academy of Sciences, 100(5), 2197–2202.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., Vetterli, M., DeVore, R., & Daubechies, I. (1998). Data compression and harmonic analysis. IEEE Transactions on Information Theory, 44(6), 2435–2476.

    Article  MathSciNet  MATH  Google Scholar 

  • Effros, M., & Chou, P. (1995). Weighted universal transform coding: Universal image compression with the Karhunen-Loéve transform. In IEEE International Conference on Image Processing (Vol. 2, pp. 61–64).

    Google Scholar 

  • Elad, M., & Bruckstein, A. (2001). On sparse signal representations. In IEEE International Conference on Image Processing.

    Google Scholar 

  • Elad, M., & Bruckstein, A. (2002). A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Transactions on Information Theory, 48(9), 2558–2567.

    Article  MathSciNet  MATH  Google Scholar 

  • Elad, M., Figueiredo, M. A. T., & Ma, Y. (2010). On the role of sparse and redundant representations in image processing. Proceedings of the IEEE, 98(6), 972–982.

    Article  Google Scholar 

  • Feuer, A., Nemirovski, A. (2003). On sparse representation in pairs of bases. IEEE Transactions on Information Theory, 49(6), 1579–1581.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, Y. (1995). Fractal Image Compression: Theory and Application. Springer-Verlag Telos.

    Book  Google Scholar 

  • Gersho, A., & Gray, R. M. (1992). Vector Quantization and Signal Compression. Boston: Kluwer Academic.

    Book  MATH  Google Scholar 

  • Hong, W., Wright, J., Huang, K., & Ma, Y. (2006). Multi-scale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 15(12), 3655–3671.

    Article  MathSciNet  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.

    Article  MATH  Google Scholar 

  • Jolliffe, I. (2002). Principal Component Analysis (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • LePennec, E., & Mallat, S. (2005). Sparse geometric image representation with bandelets. IEEE Transactions on Image Processing, 14(4), 423–438.

    Article  MathSciNet  Google Scholar 

  • Mallat, S. (1999). A Wavelet Tour of Signal Processing (2nd ed.). London: Academic.

    MATH  Google Scholar 

  • Meyer, F. (2000). Fast adaptive wavelet packet image compression. IEEE Transactions on Image Processing, 9(5), 792–800.

    Article  Google Scholar 

  • Meyer, F. (2002). Image compression with adaptive local cosines. IEEE Transactions on Image Processing, 11(6), 616–629.

    Article  Google Scholar 

  • Muresan, D., & Parks, T. (2003). Adaptive principal components and image denoising. In IEEE International Conference on Image Processing.

    Google Scholar 

  • Olshausen, B., & D.J.Field (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.

    Article  Google Scholar 

  • Pavlovic, V., Moulin, P., & Ramchandran, K. (1998). An integrated framework for adaptive subband image coding. IEEE Transactions on Signal Processing, 47(4), 1024–1038.

    Article  Google Scholar 

  • Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosphical Magazine and Journal of Science, 2, 559–572.

    Article  MATH  Google Scholar 

  • Rabiee, H., Kashyap, R., & Safavian, S. (1996). Adaptive multiresolution image coding with matching and basis pursuits. In IEEE International Conference on Image Processing.

    Google Scholar 

  • Ramchandran, K., & Vetterli, M. (1993). Best wavelet packets bases in a rate-distortion sense. IEEE Transactions on Image Processing, 2, 160–175.

    Article  Google Scholar 

  • Ramchandran, K., Vetterli, M., & Herley, C. (1996). Wavelets, subband coding, and best basis. Proceedings of the IEEE, 84(4), 541–560.

    Article  Google Scholar 

  • Shapiro, J. M. (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41(12), 3445–3463.

    Article  MATH  Google Scholar 

  • Sikora, T., & Makai, B. (1995). Shape-adaptive DCT for generic coding of video. IEEE Transactions on Circuits and Systems For Video Technology, 5, 59–62.

    Article  Google Scholar 

  • Spielman, D., Wang, H., & Wright, J. (2012). Exact recovery of sparsity-used dictionaries. Conference on Learning Theory (COLT).

    Google Scholar 

  • Starck, J.-L., Elad, M., & Donoho, D. (2003). Image decomposition: Separation of texture from piecewise smooth content. In Proceedings of the SPIE (Vol. 5207, pp. 571–582).

    Google Scholar 

  • Sun, J., Qu, Q., & Wright, J. (2015). Complete dictionary recovery over the sphere. Preprint. http://arxiv.org/abs/1504.06785

    Book  Google Scholar 

  • Vetterli, M., & Kovacevic, J. (1995). Wavelets and subband coding. Upper Saddle River: Prentice-Hall.

    MATH  Google Scholar 

  • Wallace, G. K. (1991). The JPEG still picture compression standard. Communications of the ACM. Special issue on digital multimedia systems, 34(4), 30–44.

    Google Scholar 

  • Yang, J., Wright, J., Huang, T., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861–2873.

    Article  MathSciNet  Google Scholar 

  • Yu, G., Sapiro, G., & Mallat, S. (2010). Image modeling and enhancement via structured sparse model selection. In International Conference on Image Processing.

    Google Scholar 

  • Yu, G., Sapiro, G., & Mallat, S. (2012). Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing, 21(5), 2481–2499.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag New York

About this chapter

Cite this chapter

Vidal, R., Ma, Y., Sastry, S.S. (2016). Image Representation. In: Generalized Principal Component Analysis. Interdisciplinary Applied Mathematics, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87811-9_9

Download citation

Publish with us

Policies and ethics