Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1104 Accesses

Abstract

As we pointed out in some detail in Chapter 1, the concept of first arose in two physical contexts: propagation in a certain spatial region of a gene, whose carriers have an advantage in the struggle for existence, and fluid mechanics, in particular, and involving shocks. In Chapters 3 and 4, we studied the asymptotic behaviour of solutions of nonlinear PDEs of parabolic type, which include those describing gene propagation. In the present chapter, we discuss some physical problems which arise from fluid mechanics and which are governed by hyperbolic or parabolic systems of equations. These systems admit similarity solutions of the first or second kind. The latter, in general, enjoy intermediate asymptotic character in some parametric regimes. We recall that the self-similar solutions of the first kind are fully determined by the dimensional considerations and require the solution of the resulting nonlinear ODEs with appropriate conditions at the shock and the centre of the in this context, say, whereas those of the second kind involve solution of an eigenvalue problem in the reduced phase plane, the , for example.

*(Deceased)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barenblatt, G. I. (1953) On a class of exact solutions of plane one dimensional problem of unsteady filtration of a gas in a porous medium, Prikl. Mat. Mekh. 17, 739–742.

    MATH  MathSciNet  Google Scholar 

  2. Coppel, W. (1960) On a differential equation of boundary layer theory, Phil. Trans. A 253, 101–136.

    Article  MathSciNet  Google Scholar 

  3. Courant, R., Friedrichs, K. O. (1948) Supersonic Flow and Shock Waves, Wiley Interscience, New York.

    MATH  Google Scholar 

  4. Gallay, T., Raugel, G. (1998) Scaling variables and asymptotic expansions in damped wave equations, J. Differential Eq. 150, 42–97.

    Article  MATH  MathSciNet  Google Scholar 

  5. Gallay, T., Raugel, G. (2000) Scaling variables and stability of hyperbolic fronts, SIAM J. Math. Anal. 32, 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  6. Gallay, T., Wayne, C. E. (2002) Long-time asymptotics of the Navier–Stokes and vorticity equations on R3, Phil. Trans. R. Soc. Lond. A 360, 2155–2188.

    Article  MATH  MathSciNet  Google Scholar 

  7. Guderley, G. (1942) Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschüng, 19, 302–312.

    MathSciNet  Google Scholar 

  8. Hsiao, L., Liu, T. P. (1992) Convergence to nonlinear diffusive waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys. 143, 599–605.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hunter, C. (1960) On the collapse of an empty cavity in water, J. Fluid. Mech. 8, 241–263.

    Article  MATH  Google Scholar 

  10. Khusnutdinova, N. V. (1970) Asymptotic stability of the solutions of boundary layer equations, Prikl. Mat. Mekh. 34, 526–531.

    MathSciNet  Google Scholar 

  11. Korobeinikov, V. P., Riazanov, E. V. (1959) Solutions of singular cases of point explosions in a gas, Prikl. Mat. Mekh. 23, 384–387.

    Google Scholar 

  12. Lazarus, R. B. (1982) One–dimensional stability of self-similar converging flows, Phys. Fluids 25, 1146–1155.

    Google Scholar 

  13. Liu, T. P. (1996) Compressible flow with damping and vacuum, Japan J. Indust. Appl. Math. 13, 25–32.

    Article  MATH  MathSciNet  Google Scholar 

  14. Matzumura, A. (1978) Nonlinear hyperbolic equations and related topics in fluid dynamics, Nishida, T. (Ed.) Pub. Math. D’Orsay, 53–57.

    Google Scholar 

  15. Nickel, K. (1958) Einzige Eigenschaften von Lösungen der Prandtlschen Grenzschicht-Differentialgleichungen, Arch. Rat. Mech. Anal. 2, 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  16. Nishihara, K. (1996) Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differential Eq. 131, 171–188.

    Article  MATH  MathSciNet  Google Scholar 

  17. Nishihara, K. (1997) Asymptotic behaviour of solutions of quasilinear hyperbolic equations with linear damping, J. Differential Eq. 137, 384–395.

    Article  MATH  MathSciNet  Google Scholar 

  18. Oleinik, O. A. (1963a) O sisteme uravnenii teorii pogranichnogo sloia (On the system of equations in boundary layer theory), Zh. vychisl. matem. i matem. fiz., 3, 489–507.

    MathSciNet  Google Scholar 

  19. Oleinik, O. A. (1963) The Prandtl system of equations in boundary layer theory, Dokl. Acad. Nauk. SSSR 150, 28–32 (English trans. Sov. Math. 4, 583–586).

    Google Scholar 

  20. Oleinik, O. A. (1966) Stability of solutions of a system of boundary layer equations for a nonsteady flow of incompressible fluid, Prikl. Mat. Mekh., 30, 417–423.

    MathSciNet  Google Scholar 

  21. Oleinik, O. A. (1966b) A system of boundary layer equations for unsteady flow of an incompressible fluid, Soviet Math. Dokl. 7, 727–730.

    Google Scholar 

  22. Peletier, L. A. (1972) On the asymptotic behaviour of velocity profiles in laminar boundary layers, Arch. Rat. Mech. Anal. 45, 110–119.

    Article  MATH  MathSciNet  Google Scholar 

  23. Rayleigh, L. (1917) On the pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag. 34, 94–98.

    Google Scholar 

  24. Sachdev, P. L. (2004) Shock Waves and Explosions, Chapman & Hall/CRC Press, New York.

    Book  MATH  Google Scholar 

  25. Schlichting, H. (1960) Boundary Layer Theory, McGraw–Hill, New York.

    MATH  Google Scholar 

  26. Sedov, L. I. (1946) Propagation of strong blast waves, Prikl. Mat. Mekh. 10, 241–250.

    Google Scholar 

  27. Serrin, J. (1967) Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory, Proc. Roy. Soc. London Ser. A 299, 491–507.

    Article  MATH  MathSciNet  Google Scholar 

  28. Taylor, G. I. (1950) The formation of a blast wave by a very intense explosion, Proc. Roy. Soc. London Ser. A 201, 159–174.

    Article  Google Scholar 

  29. Thomas, L. P., Pais, V., Gratton, R., Diez, J. (1986) A numerical study on the transition to self-similar flow in collapsing cavities, Phys. Fluids 29, 676–679.

    Article  Google Scholar 

  30. Van Duyn, C. J., Peletier, L. A. (1977) A class of similarity solutions of the nonlinear diffusion equation, Nonlinear Anal. Theor. Meth. Appl. 1, 223–233.

    Article  MATH  Google Scholar 

  31. Van Dyke, M., Guttmann, A. J. (1982) The converging shock wave from a spherical or cylindrical piston, J. Fluid Mech. 120, 451–462.

    Article  MATH  MathSciNet  Google Scholar 

  32. Velte, W. (1960) Eine Anwendungen des Nirenbergschen Maximumsprinzips für parabolische Differentialgleichungen in der Grenzschichttheorie, Arch. Rat. Mech. Anal. 5, 420–431.

    Article  MATH  MathSciNet  Google Scholar 

  33. von Neumann, J. (1947) Blast Waves, Los Alamos Sci. Lab. Tech. series (Los Alamos, NM (1947), Vol. 7).

    Google Scholar 

  34. Waxman, E., Shvarts, D. (1993) Second-type self-similar solutions to the strong explosion problem, Phys. Fluids A 5, 1035–1046.

    Article  MATH  MathSciNet  Google Scholar 

  35. Whitham, G. B. (1974) Linear and Nonlinear Waves, John Wiley & Sons, New York.

    MATH  Google Scholar 

  36. Zel’dovich, Ya. B., Raizer, Yu. P. (1967) Physics of Shock Waves and High–Temperature Hydrodynamic Phenomena, Vol. 2, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Rao Ch. .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

P.L., S., Ch., S. (2009). Asymptotics in Fluid Mechanics. In: Large Time Asymptotics for Solutions of Nonlinear Partial Differential Equations. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87809-6_5

Download citation

Publish with us

Policies and ethics