Asymptotics in Fluid Mechanics

  • Sachdev* P.L.
  • Srinivasa Rao Ch.
Part of the Springer Monographs in Mathematics book series (SMM)


As we pointed out in some detail in Chapter 1, the concept of first arose in two physical contexts: propagation in a certain spatial region of a gene, whose carriers have an advantage in the struggle for existence, and fluid mechanics, in particular, and involving shocks. In Chapters 3 and 4, we studied the asymptotic behaviour of solutions of nonlinear PDEs of parabolic type, which include those describing gene propagation. In the present chapter, we discuss some physical problems which arise from fluid mechanics and which are governed by hyperbolic or parabolic systems of equations. These systems admit similarity solutions of the first or second kind. The latter, in general, enjoy intermediate asymptotic character in some parametric regimes. We recall that the self-similar solutions of the first kind are fully determined by the dimensional considerations and require the solution of the resulting nonlinear ODEs with appropriate conditions at the shock and the centre of the in this context, say, whereas those of the second kind involve solution of an eigenvalue problem in the reduced phase plane, the , for example.


Similarity Solution Blast Wave Fluid Mechanics Boundary Layer Equation Nonlinear PDEs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barenblatt, G. I. (1953) On a class of exact solutions of plane one dimensional problem of unsteady filtration of a gas in a porous medium, Prikl. Mat. Mekh. 17, 739–742.MATHMathSciNetGoogle Scholar
  2. 2.
    Coppel, W. (1960) On a differential equation of boundary layer theory, Phil. Trans. A 253, 101–136.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Courant, R., Friedrichs, K. O. (1948) Supersonic Flow and Shock Waves, Wiley Interscience, New York.MATHGoogle Scholar
  4. 4.
    Gallay, T., Raugel, G. (1998) Scaling variables and asymptotic expansions in damped wave equations, J. Differential Eq. 150, 42–97.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gallay, T., Raugel, G. (2000) Scaling variables and stability of hyperbolic fronts, SIAM J. Math. Anal. 32, 1–29.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gallay, T., Wayne, C. E. (2002) Long-time asymptotics of the Navier–Stokes and vorticity equations on R3, Phil. Trans. R. Soc. Lond. A 360, 2155–2188.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Guderley, G. (1942) Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschüng, 19, 302–312.MathSciNetGoogle Scholar
  8. 8.
    Hsiao, L., Liu, T. P. (1992) Convergence to nonlinear diffusive waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys. 143, 599–605.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hunter, C. (1960) On the collapse of an empty cavity in water, J. Fluid. Mech. 8, 241–263.MATHCrossRefGoogle Scholar
  10. 10.
    Khusnutdinova, N. V. (1970) Asymptotic stability of the solutions of boundary layer equations, Prikl. Mat. Mekh. 34, 526–531.MathSciNetGoogle Scholar
  11. 11.
    Korobeinikov, V. P., Riazanov, E. V. (1959) Solutions of singular cases of point explosions in a gas, Prikl. Mat. Mekh. 23, 384–387.Google Scholar
  12. 12.
    Lazarus, R. B. (1982) One–dimensional stability of self-similar converging flows, Phys. Fluids 25, 1146–1155.Google Scholar
  13. 13.
    Liu, T. P. (1996) Compressible flow with damping and vacuum, Japan J. Indust. Appl. Math. 13, 25–32.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Matzumura, A. (1978) Nonlinear hyperbolic equations and related topics in fluid dynamics, Nishida, T. (Ed.) Pub. Math. D’Orsay, 53–57.Google Scholar
  15. 15.
    Nickel, K. (1958) Einzige Eigenschaften von Lösungen der Prandtlschen Grenzschicht-Differentialgleichungen, Arch. Rat. Mech. Anal. 2, 1–31.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nishihara, K. (1996) Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differential Eq. 131, 171–188.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Nishihara, K. (1997) Asymptotic behaviour of solutions of quasilinear hyperbolic equations with linear damping, J. Differential Eq. 137, 384–395.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Oleinik, O. A. (1963a) O sisteme uravnenii teorii pogranichnogo sloia (On the system of equations in boundary layer theory), Zh. vychisl. matem. i matem. fiz., 3, 489–507.MathSciNetGoogle Scholar
  19. 19.
    Oleinik, O. A. (1963) The Prandtl system of equations in boundary layer theory, Dokl. Acad. Nauk. SSSR 150, 28–32 (English trans. Sov. Math. 4, 583–586).Google Scholar
  20. 20.
    Oleinik, O. A. (1966) Stability of solutions of a system of boundary layer equations for a nonsteady flow of incompressible fluid, Prikl. Mat. Mekh., 30, 417–423.MathSciNetGoogle Scholar
  21. 21.
    Oleinik, O. A. (1966b) A system of boundary layer equations for unsteady flow of an incompressible fluid, Soviet Math. Dokl. 7, 727–730.Google Scholar
  22. 22.
    Peletier, L. A. (1972) On the asymptotic behaviour of velocity profiles in laminar boundary layers, Arch. Rat. Mech. Anal. 45, 110–119.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Rayleigh, L. (1917) On the pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag. 34, 94–98.Google Scholar
  24. 24.
    Sachdev, P. L. (2004) Shock Waves and Explosions, Chapman & Hall/CRC Press, New York.MATHCrossRefGoogle Scholar
  25. 25.
    Schlichting, H. (1960) Boundary Layer Theory, McGraw–Hill, New York.MATHGoogle Scholar
  26. 26.
    Sedov, L. I. (1946) Propagation of strong blast waves, Prikl. Mat. Mekh. 10, 241–250.Google Scholar
  27. 27.
    Serrin, J. (1967) Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory, Proc. Roy. Soc. London Ser. A 299, 491–507.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Taylor, G. I. (1950) The formation of a blast wave by a very intense explosion, Proc. Roy. Soc. London Ser. A 201, 159–174.CrossRefGoogle Scholar
  29. 29.
    Thomas, L. P., Pais, V., Gratton, R., Diez, J. (1986) A numerical study on the transition to self-similar flow in collapsing cavities, Phys. Fluids 29, 676–679.CrossRefGoogle Scholar
  30. 30.
    Van Duyn, C. J., Peletier, L. A. (1977) A class of similarity solutions of the nonlinear diffusion equation, Nonlinear Anal. Theor. Meth. Appl. 1, 223–233.MATHCrossRefGoogle Scholar
  31. 31.
    Van Dyke, M., Guttmann, A. J. (1982) The converging shock wave from a spherical or cylindrical piston, J. Fluid Mech. 120, 451–462.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Velte, W. (1960) Eine Anwendungen des Nirenbergschen Maximumsprinzips für parabolische Differentialgleichungen in der Grenzschichttheorie, Arch. Rat. Mech. Anal. 5, 420–431.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    von Neumann, J. (1947) Blast Waves, Los Alamos Sci. Lab. Tech. series (Los Alamos, NM (1947), Vol. 7).Google Scholar
  34. 34.
    Waxman, E., Shvarts, D. (1993) Second-type self-similar solutions to the strong explosion problem, Phys. Fluids A 5, 1035–1046.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Whitham, G. B. (1974) Linear and Nonlinear Waves, John Wiley & Sons, New York.MATHGoogle Scholar
  36. 36.
    Zel’dovich, Ya. B., Raizer, Yu. P. (1967) Physics of Shock Waves and High–Temperature Hydrodynamic Phenomena, Vol. 2, Academic Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MathmeticsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations