Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1098 Accesses

Abstract

Nonlinear partial differential equations (PDEs) do not, in general, admit exact solutions; these solutions are even more rare when initial/boundary conditions are imposed. There are exceptional circumstances when the PDEs enjoy certain symmetries: they are invariant to a class of finite or infinitesimal transformations (Sachdev (2000). When this is the case, the PDEs are exactly reducible to ordinary differential equations (ODEs) if they are functions of two independent variables; the ODEs may occasionally be integrated in a closed form. Alternatively, one may study their qualitative properties and obtain the actual solutions numerically with reference to appropriate initial/boundary conditions. These solutions are called and belong to one of the two classes, first kind and second kind (Zel’dovich 1956, Zel’dovich and Raizer 1967, Barenblatt and Zel’dovich 1972, Sachdev 2000), and solve some degenerate problems for which ‘all, or at least some, of the constant parameters in the initial and boundary conditions of the problem, having the dimensionality of independent variables, tend to zero or infinity.’ These solutions describe those properties of the phenomena that do not depend on the details of the initial and boundary conditions; they do involve some nondimensional parameters which, in some integral sense, represent the memory of initial/boundary conditions. Exceptionally, there may not be any nondimensional parameter of the problem in the asymptotic solution (Barenblatt and Zel’dovich 1972). These special solutions do not describe equilibrium states; they describe intermediate stages when the process of evolution of the solution is continuing and yet the details of initial/boundary conditions have already disappeared. These solutions satisfy some singular, delta functions like, initial conditions.

*(Deceased)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barenblatt, G. I., Zel’dovich, Ya. B. (1971) Intermediate asymptotics in mathematical physics, Russian Math. Surveys 26, 45–61.

    Article  Google Scholar 

  2. Barenblatt, G. I., Zel’dovich, Ya. B. (1972) Self-similar solutions as intermediate asymptotics, Ann. Rev. Fluid Mech. 4, 285–312.

    Article  Google Scholar 

  3. Bluman, G. W., Kumei, S. (1989) Symmetries and Differential Equations, Springer-Verlag, New York.

    MATH  Google Scholar 

  4. Clarkson, P. A., Kruskal, M. D. (1989) New similarity reductions of the Boussinesq equation, J. Math. Phys. 30, 2201–2213.

    Article  MATH  MathSciNet  Google Scholar 

  5. Grundy, R. E. (1988) Large time solution of the Cauchy problem for the generalized Burgers equation, Preprint, University of St. Andrews, UK.

    Google Scholar 

  6. Grundy, R. E., Sachdev, P. L., Dawson, C. N. (1994a) Large time solution of an initial value problem for a generalised Burgers equation, in Nonlinear Diffusion Phenomenon, P. L. Sachdev and R. E. Grundy (Eds.), 68–83, Narosa, New Delhi.

    Google Scholar 

  7. Grundy, R. E., Van Duijn, C. J., Dawson, C. N. (1994b) Asymptotic profiles with finite mass in one-dimensional contaminant transport through porous media: the fast reaction case, Quart. J. Mech. Appl. Math. 47, 69–106.

    Article  MATH  MathSciNet  Google Scholar 

  8. Kanel’, Ya. I. (1962) On the stability of solutions of the Cauchy problem for equations occuring in the theory of combustion, Mat. Sb. 59(101), 245–288.

    MathSciNet  Google Scholar 

  9. Kolmogorov, A. N., Petrovskii, I. G., Piskunov, N. S. (1937) Investigation of the diffusion equation connected with an increasing amount of matter and its application to a biological problem, Bull. MGU A1(6), 1–26.

    Google Scholar 

  10. Oleinik, O. A. (1966) Stability of solutions of a system of boundary layer equations for a nonsteady flow of incompressible fluid, Prikl. Mat. Mekh. 30, 417–423.

    MathSciNet  Google Scholar 

  11. Peletier, L. A. (1970) Asymptotic behaviour of temperature profiles of a class of non-linear heat conduction problems, Quart. J. Mech. Appl. Math. 23, 441–447.

    Article  MATH  MathSciNet  Google Scholar 

  12. Peletier, L. A. (1971) Asymptotic behaviour of solutions of the porous media equation, SIAM J. Appl. Math. 21, 542–551.

    Article  MATH  MathSciNet  Google Scholar 

  13. Peletier, L. A. (1972) On the asymptotic behaviour of velocity profiles in laminar boundary layers, Arch. Rat. Mech. Anal. 45, 110–119.

    Article  MATH  MathSciNet  Google Scholar 

  14. Philip, J. R. (1957) The theory of infiltration: 2. The profile of infinity, Soil Sci. 83, 435–448.

    Article  Google Scholar 

  15. Philip, J. R. (1974) Recent progress in the solution of nonlinear diffusion equations, Soil Sci. 117, 257–264.

    Article  Google Scholar 

  16. Sachdev, P. L. (1987) Nonlinear Diffusive Waves, Cambridge University Press, Cambridge, UK.

    Book  MATH  Google Scholar 

  17. Sachdev, P. L. (2000) Self-Similarity and Beyond–Exact Solutions of Nonlinear Problems, Chapman & Hall/ CRC Press, New York.

    Book  MATH  Google Scholar 

  18. Sachdev, P. L. (2004) Shock Waves and Explosions, Chapman & Hall/ CRC Press, New York.

    Book  MATH  Google Scholar 

  19. Sachdev, P. L., Joseph, K. T. (1994) Exact representations of N-wave solutions of generalized Burgers equations, in Nonlinear Diffusion Phenomenon, P. L. Sachdev and R. E. Grundy (Eds.), 197–219, Narosa, New Delhi.

    Google Scholar 

  20. Sachdev, P. L., Srinivasa Rao, Ch. (2000) N-wave solution of modified Burgers equation, Appl. Math. Lett. 13, 1–6.

    Article  MATH  MathSciNet  Google Scholar 

  21. Sachdev, P. L., Joseph, K. T., Nair, K. R. C. (1994) Exact N-wave solutions for the nonplanar Burgers equation, Proc. Roy. Soc. London Ser. A 445, 501–517.

    Article  MATH  MathSciNet  Google Scholar 

  22. Sachdev, P. L., Joseph, K. T., Mayil Vaganan, B. (1996) Exact N-wave solutions of generalized Burgers equations, Stud. Appl. Math. 97, 349–367.

    MATH  MathSciNet  Google Scholar 

  23. Sachdev, P. L., Srinivasa Rao, Ch., Enflo, B. O. (2005) Large-time asymptotics for periodic solutions of the modified Burgers equation, Stud. Appl. Math. 114, 307–323.

    Article  MATH  MathSciNet  Google Scholar 

  24. Sachdev, P. L., Srinivasa Rao, Ch., Joseph, K. T. (1999) Analytic and numerical study of N-waves governed by the nonplanar Burgers equation, Stud. Appl. Math. 103, 89–120.

    Article  MATH  MathSciNet  Google Scholar 

  25. Sedov, L. I. (1946) Propagation of intense blast waves, Prikl. Mat. Mekh. 10, 241–250.

    Google Scholar 

  26. Serrin, J. (1967) Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory, Proc. Royal. Soc. London Ser. A 299, 491–507.

    Article  MATH  MathSciNet  Google Scholar 

  27. Taylor, G. I. (1950) The formation of a blast wave by a very intense explosion I, Proc. Roy. Soc. London Ser. A 201, 159–174.

    Article  Google Scholar 

  28. Zel’dovich, Ya. B. (1956) The motion of a gas under the action of a short term pressure shock, Akust. Zh. 2, 28–38, (Sov. Phys. Acoustics 2, 25–35).

    Google Scholar 

  29. Zel’dovich, Ya. B., Frank-Kamenetskii, D. A. (1938) Theory of uniform propagation of flames, Doklady USSR Ac. Sci. 19, 693–697.

    Google Scholar 

  30. Zel’dovich, Ya. B., Raizer, Yu. P. (1967) Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Rao Ch. .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

P.L., S., Ch., S. (2009). Introduction. In: Large Time Asymptotics for Solutions of Nonlinear Partial Differential Equations. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87809-6_1

Download citation

Publish with us

Policies and ethics