Attractors for Evolutionary Equations

  • Igor Chueshov
  • Irena Lasiecka
Part of the Springer Monographs in Mathematics book series (SMM)


This chapter provides a survey of quantitative theory pertinent to long-time behavior of infinite-dimensional dissipative systems. The results are presented in a convenient form for applications to the material presented in subsequent chapters. For other possible approaches to the topic we refer to the monographs [17, 61, 134, 139, 172, 259, 273].

The main focus is on questions such as existence of global attractors, and their structure, dimensionality, and smoothness. In this context, gradient systems play a prominent role as an important subclass of more general dissipative systems. With the aim of unifying specific criteria that lead to the desired properties of attractors (mentioned above), we single out a class of “quasi -stable” systems that enjoy the so-called stabilizability–observability inequality. This inequality, although often difficult to establish, once it is proved provides a string of consequences that describe various properties of attractors.


Banach Space Global Attractor Inertial Manifold Exponential Attractor Dissipative Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. 4.
    J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems, Wiley, New York, 1972.MATHGoogle Scholar
  2. 17.
    A. Babin and M. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.MATHGoogle Scholar
  3. 37.
    F. Bucci and I. Chueshov, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discr. Cont. Dyn. Sys., 22 (2008), 557–586.MATHMathSciNetGoogle Scholar
  4. 38.
    F. Bucci, I. Chueshov and I. Lasiecka, Global attractor for a composite system of nonlinear wave and plate equations, Commun. Pure Appl. Anal., 6 (2007), 113–140.MATHMathSciNetGoogle Scholar
  5. 42.
    S. Ceron and O. Lopes, α-contractions and attractors for dissipative semilinear hyperbolic equations and systems, Ann. Math. Pura Appl. IV, 160 (1991), 193–206.MATHCrossRefMathSciNetGoogle Scholar
  6. 45.
    S. N. Chow and K. Lu Invariant manifolds for flows in Banach spaces, J. Diff. Eqs., 74, (1988), 285–317.MATHCrossRefMathSciNetGoogle Scholar
  7. 50.
    I. Chueshov, Inertial manifolds in the nonlinear oscillation problem of infinite panel, Ukraine Math. J., 42 (1990), 1149–1151.MATHCrossRefMathSciNetGoogle Scholar
  8. 55.
    I. Chueshov, Regularity of solutions and approximate inertial manifolds for von Karman evolution equations, Math. Meth. Appl. Sci., 17 (1994), 667–680.MATHCrossRefMathSciNetGoogle Scholar
  9. 57.
    I. Chueshov, On a construction of approximate inertial manifolds for second order in time evolution equations. Nonlinear Anal., 26 (1996), 1007–1021.MATHCrossRefMathSciNetGoogle Scholar
  10. 58.
    I. Chueshov, On a description of long-time behaviour of dissipative perturbations of infinite-dimensional Hamiltonian systems. Z. Angew. Math. Mech.. 76 S.2 (1996), 53–56.MATHGoogle Scholar
  11. 59.
    I. Chueshov, On the finiteness of the number of determining elements for von Karman evolution equations, Math. Meth. Appl. Sci., 20 (1997), 855–865.MATHCrossRefMathSciNetGoogle Scholar
  12. 60.
    I. Chueshov, Theory of functionals that uniquely determine asymptotic dynamics of infinite-dimensional dissipative systems, Russian Math. Surv., 53 (1998), 731–776.MATHCrossRefMathSciNetGoogle Scholar
  13. 61.
    I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002; see also
  14. 63.
    I. Chueshov, M. Eller and I. Lasiecka, Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation, Commun. Partial Diff. Eqs., 29 (2004), 1847–1976.MATHCrossRefMathSciNetGoogle Scholar
  15. 65.
    I. Chueshov and S. Kolbasin, Plate models with state-dependent damping coefficient and their quasi-static limits, submitted, 2010.Google Scholar
  16. 68.
    I. Chueshov and I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Diff. Eqs., 198 (2004), 196–221.MATHCrossRefMathSciNetGoogle Scholar
  17. 69.
    I. Chueshov and I. Lasiecka, Attractors for second order evolution equations, J. Dynam. Diff. Eqs., 16 (2004), 469–512.MATHCrossRefMathSciNetGoogle Scholar
  18. 70.
    I. Chueshov and I. Lasiecka, Kolmogorov’s ε-entropy for a class of invariant sets and dimension of global attractors for second order in time evolution equations with nonlinear damping. In: Control Theory of Partial Differential Equations, O. Imanuvilov et al., (Eds.), A Series of Lectures in Pure and Applied Mathematics, vol. 242, Chapman & Hall/CRC, Boca Raton, FL, 2005, 51–69.Google Scholar
  19. 71.
    I. Chueshov and I. Lasiecka, Global attractors for Mindlin–Timoshenko plates and for their Kirchhoff limits, Milan J. Math., 74 (2006), 117–138.MATHCrossRefMathSciNetGoogle Scholar
  20. 74.
    I. Chueshov and I. Lasiecka, Long time dynamics of semilinear wave equation with nonlinear interior-boundary damping and sources of critical exponents. In Control Mehtods in PDE - Dynamical systems, F. Ancona et al., (Eds.), Contemporary Mathematics, vol.426, AMS, Providence, RI, 2007, 153–193.Google Scholar
  21. 75.
    I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of AMS, vol.195, no. 912, AMS, Providence, RI, 2008.Google Scholar
  22. 77.
    I. Chueshov and I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, submitted, 2009.Google Scholar
  23. 78.
    I. Chueshov, I. Lasiecka, and D. Toundykov, Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent, Discr. Cont. Dyn. Sys., 20 (2008), 459–509.MATHMathSciNetGoogle Scholar
  24. 79.
    I. Chueshov, I. Lasiecka, and D. Toundykov, Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent, J. Dynam. Diff. Eqs., 21 (2009), 269–314.MATHCrossRefMathSciNetGoogle Scholar
  25. 86.
    B. Cockburn, D.A. Jones, and E. Titi, Determining degrees of freedom for nonlinear dissipative systems, C.R. Acad. Sci. Paris, Ser.I, 321 (1995), 563–568.MATHMathSciNetGoogle Scholar
  26. 87.
    B. Cockburn, D. A. Jones and E. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comp., 66 (1997), 1073–1087.MATHCrossRefMathSciNetGoogle Scholar
  27. 88.
    P. Constantin, C. Doering and E. Titi, Rigorous estimates of small scales in turbulent flows, J. Math. Phys., 37 (1996), 6152–6156.MATHCrossRefMathSciNetGoogle Scholar
  28. 90.
    P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer, Berlin, 1989.MATHGoogle Scholar
  29. 92.
    Ju. Daletsky and M. Krein, Stability of Solutions of Differential Equations in Banach Space. Nauka, Moscow, 1970, in Russian.Google Scholar
  30. 95.
    A. Debussche and M. Marion, On the construction of families of approximate inertial manifolds, J. Diff. Eqs., 100 (1992), 173–201.MATHCrossRefMathSciNetGoogle Scholar
  31. 96.
    C. Devulder, M. Marion and E. Titi, On the rate of convergence of the nonlinear Galerkin methods, Math. Comp., 60 (1993) 495–514.MATHCrossRefMathSciNetGoogle Scholar
  32. 101.
    M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for nonlinear reaction-diffusion systems in ℝ, C.R. Acad. Sci. Paris, Ser. I 330 (2000), 713–718.MATHMathSciNetGoogle Scholar
  33. 102.
    A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Appl. Math. 37, Masson, Paris, 1994.MATHGoogle Scholar
  34. 107.
    K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester, 1990.MATHGoogle Scholar
  35. 108.
    T. Fastovska, Upper semicontinuous attractor for 2D Mindlin–Timoshenko thermoelastic model with memory, Commun. Pure Appl. Anal., 6 (2007), 83–101.CrossRefMathSciNetGoogle Scholar
  36. 109.
    T. Fastovska, Upper semicontinuous attractors for a 2D Mindlin–Timoshenko thermo-viscoelastic model with memory, Nonlin. Anal., 71 (2009) 4833–4851.MATHCrossRefMathSciNetGoogle Scholar
  37. 113.
    C. Foias and E. Olson, Finite fractal dimension and Hölder–Lipschitz parametrization, Indiana Univ. Math. J., 45 (1996), 603–616.MATHCrossRefMathSciNetGoogle Scholar
  38. 114.
    C. Foias, O. Manley and R. Temam, Modeling of the interaction of small and large eddies in two dimensional turbulent flows, Math. Mod. Num. Anal., 22 (1998), 93–114.MathSciNetGoogle Scholar
  39. 115.
    C. Foias, O. Manley, R. Temam, and Y.M. Treve, Asymptotic analysis of the Navier–Stokes equations, Physica D, 9 (1983), 157–188.MATHCrossRefMathSciNetGoogle Scholar
  40. 116.
    C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des equations de Navier-Stokes en dimension deux, Rend. Sem. Mat. Univ. Padova, 36 (1967), 1–34.MathSciNetGoogle Scholar
  41. 117.
    C. Foias, G.R. Sell, and R. Temam, Inertial manifolds for nonlinear evolution equations, J. Diff. Eqs., 73 (1988), 309–353.MATHCrossRefMathSciNetGoogle Scholar
  42. 118.
    C. Foias and R. Temam, Determination of solutions of the Navier–Stokes equations by a set of nodal values, Math. Comp., 43 (1984), 117–133.MATHCrossRefMathSciNetGoogle Scholar
  43. 119.
    C. Foias and E.S. Titi, Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity, 4 (1991), 135–153.MATHCrossRefMathSciNetGoogle Scholar
  44. 123.
    J.M. Ghidaglia and R. Temam, Regularity of the solutions of second order evolution equations and their attractors, Ann. della Scuola Norm. Sup. Pisa, 14 (1987), 485–511.MATHMathSciNetGoogle Scholar
  45. 134.
    J.K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988.MATHGoogle Scholar
  46. 139.
    D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981.MATHGoogle Scholar
  47. 153.
    M.S. Jolly, I.G. Kevrekidis, and E.S. Titi, Approximate inertial manifolds for Kuramoto-Sivashinsky equation: analysis and computations, Physica D, 44, (1990), 38–60.MATHCrossRefMathSciNetGoogle Scholar
  48. 154.
    D.A. Jones and E.S. Titi, Determination of the solutions of the Navier-Stokes equations by finite volume elements, Physica D, 60 (1992), 165–174.MATHCrossRefMathSciNetGoogle Scholar
  49. 155.
    D.A. Jones and E.S. Titi, Upper bounds on the number of determining modes, nodes and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 875–887.MATHCrossRefMathSciNetGoogle Scholar
  50. 157.
    L.V. Kapitansky and I.N. Kostin, Attractors of nonlinear evolution equations and their approxiamtins, Leningrad Math. J., 2 (1991), 97–117.MathSciNetGoogle Scholar
  51. 160.
    A. K. Khanmamedov, Global attractors for von Karman equations with nonlinear dissipation, J. Math. Anal. Appl., 318 (2006), 92–101.MATHCrossRefMathSciNetGoogle Scholar
  52. 167.
    I. N. Kostin, Rate of attraction to a non-hyperbolic attractor, Asympt. Anal., 16 (1998), 203–222.MATHMathSciNetGoogle Scholar
  53. 170.
    O. Ladyzhenskaya, A dynamical system generated by the Navier–Stokes equations, J. Soviet Math., 3(4) (1975), 458–479.MATHCrossRefGoogle Scholar
  54. 171.
    O. Ladyzhenskaya, Estimates for the fractal dimension and number of deterministic modes for invariant sets of dynamical systems, J. Soviet Math., 49 (1990), 1186–1201.MATHCrossRefMathSciNetGoogle Scholar
  55. 172.
    O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.MATHCrossRefGoogle Scholar
  56. 225.
    J. Málek and J. Nečas, A finite dimensional attractor for three dimensional flow of incompressible fluids, J. Diff. Eqs., 127 (1996), 498–518.MATHCrossRefGoogle Scholar
  57. 226.
    J.Málek and D. Pražak, Large time behavior via the method of l-tra-jectories, J. Diff. Eqs., 181 (2002), 243–279.MATHCrossRefGoogle Scholar
  58. 227.
    J. Mallet-Paret and G. Sell, Inertial manifolds for reaction diffusion equations in higher dimension, J. Amer. Math. Soc., 1 (1988), 805–866.CrossRefMathSciNetGoogle Scholar
  59. 228.
    M. Marion and R. Temam, Nonlinear Galerkin methods, SIAM J. Num. Anal., 26 (1989), 1139–1157.MATHCrossRefMathSciNetGoogle Scholar
  60. 232.
    A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Handbook of Differential Equations: Evolutionary Equations, vol. 4, C.M. Dafermos, and M. Pokorny (Eds.), Elsevier, Amsterdam, 2008, 103–200.Google Scholar
  61. 233.
    Ju. A. Mitropolsky and O. B. Lykova, Integral Manifolds in Nonlinear Mechanics, Nauka, Moscow, 1973, in Russian.Google Scholar
  62. 236.
    X. Mora, Finite-dimensional attracting invariant manifolds for damped semilinear equations. Res. Notes Math., 155 (1987), 172–183.MathSciNetGoogle Scholar
  63. 240.
    J. Novo, E. Titi and S. Wynne, Efficient methods using high accuracy approximate inertial manifolds. Numer. Math., 87 (2001), 523–554.MATHCrossRefMathSciNetGoogle Scholar
  64. 243.
    M. Potomkin, Asymptotic behavior of thermoviscoelastic Berger plate, Commun. Pure Appl. Anal., 9 (2010), 161–192.CrossRefMathSciNetGoogle Scholar
  65. 244.
    D. Pražak, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, J. Dyn. Diff. Eqs., 14 (2002), 764–776.Google Scholar
  66. 246.
    G. Raugel, Global Attractors in partial differential equations. In: Handbook of Dynamical Systems, vol. 2, B. Fiedler (Ed.), Elsevier, Amsterdam, 2002, 885–982.CrossRefGoogle Scholar
  67. 253.
    I. Ryzhkova, On a retarded PDE system for a von Karman plate with thermal effects in the flow of gas, Matem. Fizika, Analiz, Geometrija, 12(2) (2005), 173–186.MATHMathSciNetGoogle Scholar
  68. 258.
    M. Sermange and R. Temam, Some mathematical questions related to MHD equations, Commun. Pure Appl. Math. 36 (1983), 635–664.MATHCrossRefMathSciNetGoogle Scholar
  69. 259.
    G.R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002.MATHGoogle Scholar
  70. 261.
    V.I. Shubov, On subsets of a Hilbert space which have a finite Huasdorff dimension, Zapiski Nauchnyh Seminarov LOMI, 163 (1987), 154–165; in Russian.MATHGoogle Scholar
  71. 273.
    R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.MATHGoogle Scholar
  72. 274.
    R. Temam, Induced trajectories and approximate inertial manifolds, Math. Mod. Num. Anal., 23 (1989), 541–561.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of Mechanics & MathematicsKharkov National UniversityKharkovUkraine
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations