Structural Acoustic Problems and Plates in a Potential Flow of Gas

  • Igor Chueshov
  • Irena Lasiecka
Part of the Springer Monographs in Mathematics book series (SMM)


In this chapter we discuss several models that involve coupled PDE structures. The coupling is between two second-order evolution equations and takes place on the lower-dimensional manifold interface between the two media. More specifically, we consider


Weak Solution Strong Solution Potential Flow Rotational Inertia Maximal Monotone Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. 10.
    G. Avalos and I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system, Semigroup Forum, 57 (1998), 278–292.MATHCrossRefMathSciNetGoogle Scholar
  2. 14.
    G. Avalos and I. Lasiecka, Exact controllability of structural acoustic interactions, J. Math. Pures Appl., 82 (2003), 1047–1073.MATHMathSciNetGoogle Scholar
  3. 15.
    G. Avalos and I. Lasiecka, Exact controllability of finite energy states for an acoustic wave/plate interaction under the influence of boundary and localized controls, Adv. Diff. Eqs., 10 (2005), 901–930.MATHMathSciNetGoogle Scholar
  4. 18.
    V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.MATHGoogle Scholar
  5. 19.
    J. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 9 (1976), 895–917.CrossRefMathSciNetGoogle Scholar
  6. 28.
    V.V. Bolotin, Nonconservative Problems of Elastic Stability, Pergamon Press, Oxford, 1963.MATHGoogle Scholar
  7. 30.
    A. Boutet de Monvel and I. Chueshov, The problem on interaction of von Karman plate with subsonic flow of gas, Math. Meth. Appl. Sci., 22 (1999), 801–810.MATHCrossRefGoogle Scholar
  8. 31.
    L. Boutet de Monvel and I. Chueshov, Non-linear oscillations of a plate in a flow of gas, C.R. Acad. Sci. Paris, Ser.I, 322 (1996), 1001–1006.MATHGoogle Scholar
  9. 32.
    L. Boutet de Monvel and I. Chueshov, Oscillations of von Karman plate in a potential flow of gas, Izvestiya: Mathematics, 63(2) (1999), 219–244.MATHCrossRefMathSciNetGoogle Scholar
  10. 33.
    L. Boutet de Monvel, I. Chueshov and A. Rezounenko, Long-time behaviour of strong solutions of retarded nonlinear P.D.E.s, Commun. Partial Diff. Eqs., 22 (1997), 1453–1474.MATHCrossRefGoogle Scholar
  11. 36.
    F. Bucci, Uniform decay rates of solutions to a system of coupled PDEs with nonlinear internal dissipation, Diff. Integral Eqs., 16 (2003), 865–896.MATHMathSciNetGoogle Scholar
  12. 37.
    F. Bucci and I. Chueshov, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discr. Cont. Dyn. Sys., 22 (2008), 557–586.MATHMathSciNetGoogle Scholar
  13. 38.
    F. Bucci, I. Chueshov and I. Lasiecka, Global attractor for a composite system of nonlinear wave and plate equations, Commun. Pure Appl. Anal., 6 (2007), 113–140.MATHMathSciNetGoogle Scholar
  14. 39.
    J. Cagnol, I. Lasiecka and C. Lebiedzik, Uniform stability in structural acoustic models with flexible curved walls, J. Diff. Eqs., 186 (2002), 88–121.CrossRefMathSciNetGoogle Scholar
  15. 52.
    I. Chueshov, Construction of solutions in a problem of the oscillations of a shell in a potential subsonic flow. In: Operator Theory, Subharmonic Functions, V.A. Marchenko (Ed.), Naukova Dumka, Kiev, 1991, 147–154, in Russian.Google Scholar
  16. 54.
    I. Chueshov, On a certain system of equations with delay, occurring in aeroelasticity, J. Soviet Math., 58 (1992), 385–390.CrossRefMathSciNetGoogle Scholar
  17. 73.
    I. Chueshov and I. Lasiecka, Long-time dynamics of von Karman semi-flows with nonlinear boundary/interior damping, J. Diff. Eqs., 233 (2007), 42–86.MATHCrossRefMathSciNetGoogle Scholar
  18. 74.
    I. Chueshov and I. Lasiecka, Long time dynamics of semilinear wave equation with nonlinear interior-boundary damping and sources of critical exponents. In Control Mehtods in PDE - Dynamical systems, F. Ancona et al., (Eds.), Contemporary Mathematics, vol.426, AMS, Providence, RI, 2007, 153–193.Google Scholar
  19. 75.
    I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of AMS, vol.195, no. 912, AMS, Providence, RI, 2008.Google Scholar
  20. 80.
    I. Chueshov and A. Rezounenko, Global attractors for a class of retarded quasilinear partial differential equations, C. R. Acad. Sci. Paris, Ser.I, 321 (1995), 607–612.MATHMathSciNetGoogle Scholar
  21. 85.
    P. Ciarlet and P. Rabier, Les Equations de von Karman, Springer, Berlin, 1980.MATHGoogle Scholar
  22. 99.
    E.H. Dowell, Aeroelastisity of Plates and Shells, Noordhoff International, Leyden, 1975.Google Scholar
  23. 131.
    M. Grobbelaar-Van Dalsen, On a structural acoustic model with interface a Reissner–Mindlin plate or a Timoshenko beam, J. Math. Anal. Appl., 320 (2006), 121–144.MATHCrossRefMathSciNetGoogle Scholar
  24. 146.
    M.S. Howe, Acoustics of Fluid-Structure Interactions, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 1998.MATHCrossRefGoogle Scholar
  25. 147.
    A.A. Il’ushin, The plane sections law in aerodynamics of large supersonic speeds, Prikladnaya Matem. Mech., 20(6) (1956), 733–755, in Russian.Google Scholar
  26. 168.
    E.A. Krasil’shchikova, The Thin Wing in a Compressible Flow. Nauka, Moscow, 1978, in Russian.Google Scholar
  27. 185.
    I. Lasiecka, Boundary stabilization of a 3-dimensional structural acoustic model, J. Math. Pure Appl., 78 (1999), 203–232.MATHMathSciNetGoogle Scholar
  28. 188.
    I. Lasiecka, Mathematical Control Theory of Coupled PDE’s, CBMS-NSF Lecture Notes, SIAM, Philadelphia, 2002.Google Scholar
  29. 199.
    I. Lasiecka and R. Triggiani, Sharp regularity theory for second order hyperbolic equations of Neumann type, Annali Mat. Pura Appl., 157 (1990), 285–367.MATHCrossRefMathSciNetGoogle Scholar
  30. 215.
    I. Lasiecka and R. Triggiani, Factor spaces and implications on Kirchhoff equations with clamped boundary conditions, Abstr. Appl. Anal., 6 (2001), 441–488.MATHCrossRefMathSciNetGoogle Scholar
  31. 216.
    I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Cambridge University Press, Cambridge, 2000.Google Scholar
  32. 222.
    J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York, 1972.Google Scholar
  33. 223.
    W. Littman and S. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping, Ann. Mat. Pura Appl., 152 (1988), 281–330.MATHCrossRefMathSciNetGoogle Scholar
  34. 235.
    S. Miyatake, A sharp form of the existence theorem for hyperbolic mixed problems of second order, J. Math. Kyoto Univ., 17 (1977), 199–223.MATHMathSciNetGoogle Scholar
  35. 238.
    P.M. Morse and K.U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968.Google Scholar
  36. 252.
    I. Ryzhkova, Stabilization of von Karman plate in the presence of thermal effects in a subsonic potential flow of gas, J. Math. Anal. Appl., 294 (2004), 462–481.MATHCrossRefMathSciNetGoogle Scholar
  37. 253.
    I. Ryzhkova, On a retarded PDE system for a von Karman plate with thermal effects in the flow of gas, Matem. Fizika, Analiz, Geometrija, 12(2) (2005), 173–186.MATHMathSciNetGoogle Scholar
  38. 254.
    I. Ryzhkova, Dynamics of a thermoelastic von Karman plate in a subsonic gas flow, Z. Angew. Math. Phys., 58 (2007), 246–261.MATHCrossRefMathSciNetGoogle Scholar
  39. 260.
    R. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, AMS Providence, 1997Google Scholar
  40. 263.
    J. Simon, Compact sets in the space L p(0,T;B), Annali Mat. Pura Appl., 148 (1987), 65–96.Google Scholar
  41. 268.
    D. Tataru, On the regularity of boundary traces for the wave equation, Ann. della Scuola Norm. Sup. Pisa, (4) 26 (1998), 185–206.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of Mechanics & MathematicsKharkov National UniversityKharkovUkraine
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations