Skip to main content

Evolutionary Equations

  • Chapter
  • First Online:
Von Karman Evolution Equations

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 1184 Accesses

Abstract

This chapter provides preliminary material dealing with evolutionary abstract equations that serve as a prototype for von Karman evolutions discussed in subsequent chapters. Special attention is paid to the existence and uniqueness of solutions to nonlinear evolutionary equations. The methods used are based on monotone operator theory and their adaptation to nonmonotone problems. In what follows we provide a brief exposition of nonlinear semigroup theory and related concepts in maximal-monotone operator theory. We restrict our attention to single-valued operators, although many results stated below remain true in the multivalued setting.

We also state several results pertinent to linear plate equations in a form convenient for applications in subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic plates with free boundary conditions and without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155–182.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.

    MATH  Google Scholar 

  3. H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.

    MATH  Google Scholar 

  4. I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Commun. Partial Diff. Eqs., 27 (2002), 1901–1951.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of AMS, vol.195, no. 912, AMS, Providence, RI, 2008.

    Google Scholar 

  6. I. Chueshov and I. Lasiecka, Attractors and long time behavior of von Karman thermoelastic plates, Appl. Math. Optim., 58 (2008), 195–241.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Gajewski, K. Greger, and K. Zacharias, Nichtlineare Operator Gleichungen und Operator Differential Gleichungen, Akademic-Verlar, Berlin, 1974.

    Google Scholar 

  8. J.M. Ghidaglia and R. Temam, Regularity of the solutions of second order evolution equations and their attractors, Ann. della Scuola Norm. Sup. Pisa, 14 (1987), 485–511.

    MATH  MathSciNet  Google Scholar 

  9. H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity - full von Karman systems. In: Evolution Equations, Semigroups and Functional Analysis, W.R. Neumann, A. Lorenzi, and A. Lorenzi (Eds.), (Progress in Nonlinear Differential Equations and their Applications, vol.50), Birkhäuser, Basel, 2002, 197–216.

    Google Scholar 

  10. J. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Diff. Eqs., 91 (1991), 355–388.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Lagnese and J.L. Lions Modeling, Analysis and Control of Thin Plates, Masson, Paris, 1988.

    Google Scholar 

  12. I. Lasiecka. Existence and uniqueness of solutions to second order nonlinear and nonmonotone boundary conditions, Nonlin. Anal. TMA, 24 (1994), 797–823.

    Article  MathSciNet  Google Scholar 

  13. I. Lasiecka, J.L. Lions and R. Triggiani, Non homogenous boundary value problems for second order hyperbolic operators, J.Math. Pures Appl., 65 (1986), 149–192.

    MATH  MathSciNet  Google Scholar 

  14. I. Lasiecka and R. Triggiani, Regularity theory of hyperbolic equations with non-homo-genous Neumann boundary conditions II: General boundary data, J. Diff. Eqs., 94 (1991), 112–164.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Lasiecka and R. Triggiani, A sharp trace result on a thermo-elastic plate equation with coupled hinged/Neumann boundary conditions, Discr. Cont. Dyn. Syst., 5 (1999), 585–598.

    Article  MATH  MathSciNet  Google Scholar 

  16. I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equations with controls in the Dirichlet and Neumann boundary conditions: A non-conservative case, SIAM J. Control, 27 (1989), 330–373.

    Article  MATH  MathSciNet  Google Scholar 

  17. I. Lasiecka and R. Triggiani. Sharp regularity ntheory for elastic and thermoelastic Kirchoff equations with free boundary conditions, Rocky Mount. J., 30 (2000), 981–1024.

    Article  MATH  MathSciNet  Google Scholar 

  18. I. Lasiecka and R. Triggiani, Optimal regularity of elastic and thermoelastic Kirchoff plates with clamped boundary control. In: Optimal Control of Complex Structures, K. Hoffmann et al., (Eds.) (ISNM, vol. 139), Birkhäuser, Basel, 2002, 171–182.

    Google Scholar 

  19. I. Lasiecka and R. Triggiani, Factor spaces and implications on Kirchhoff equations with clamped boundary conditions, Abstr. Appl. Anal., 6 (2001), 441–488.

    Article  MATH  MathSciNet  Google Scholar 

  20. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  21. J. L. Lions, Controlabilité Exacte, Perturbations et Stabilization des Systèms Distribués, Masson, Paris, 1988.

    Google Scholar 

  22. J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York, 1972.

    Google Scholar 

  23. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1986.

    Google Scholar 

  24. R. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, AMS Providence, 1997

    Google Scholar 

  25. H. Triebel, Interpolation Theory, Functional Spaces and Differential Operators, North-Holland, Amsterdam, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Chueshov .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media

About this chapter

Cite this chapter

Chueshov, I., Lasiecka, I. (2010). Evolutionary Equations. In: Von Karman Evolution Equations. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87712-9_2

Download citation

Publish with us

Policies and ethics