• Igor Chueshov
  • Irena Lasiecka
Part of the Springer Monographs in Mathematics book series (SMM)


In this chapter we undertake a study of asymptotic behavior of solutions associated with von Karman evolution equations subject to thermal dissipation. We consider models with and without the rotational inertia terms. The presence of this parameter changes the character of the thermoelastic dynamics from parabolic-like to hyperbolic-like. We establish the existence of a compact global attractor of finite fractal dimension and study its properties. Our main tool is the stabilizability estimate which asserts that a difference of any two trajectories can be exponentially stabilized to zero modulo compact perturbation. This estimate is independent of the value of rotational inertia parameter α and heat/thermal capacity κ. This makes it possible to obtain estimates for the dimension and size of the attractor which do not depend on the parameters α and κ. We also prove upper semicontinuity of the attractor with respect to the parameters α and κ. In the case κ → 0 we show that the attractor is close in some sense to the attractor of an isothermal structurally damped von Karman model. In this chapter we mainly follow [76].


Fractal Dimension Lyapunov Function Unstable Manifold Global Attractor Rotational Inertia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. 6.
    G. Avalos, Exact controllability of thermoelastic system with control in thermal component only, Diff. Integral Eqs., 22 (2000), 1–15.MathSciNetGoogle Scholar
  2. 8.
    G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1–28.MathSciNetGoogle Scholar
  3. 9.
    G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic plates with free boundary conditions and without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155–182.MATHCrossRefMathSciNetGoogle Scholar
  4. 17.
    A. Babin and M. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.MATHGoogle Scholar
  5. 20.
    A. Benabdallah and D. Teniou, Exponential decay rates for a full von Karman model with thermal effects, Electron. J. Diff. Eqs., 7 (1998), 1–13.Google Scholar
  6. 21.
    A. Benabdallah and G. Naso, Nullcontrolability of thermoelastic plates, Abstr. Appl. Anal., 7 (2002), 585-599.MATHCrossRefMathSciNetGoogle Scholar
  7. 61.
    I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002; see also
  8. 74.
    I. Chueshov and I. Lasiecka, Long time dynamics of semilinear wave equation with nonlinear interior-boundary damping and sources of critical exponents. In Control Mehtods in PDE - Dynamical systems, F. Ancona et al., (Eds.), Contemporary Mathematics, vol.426, AMS, Providence, RI, 2007, 153–193.Google Scholar
  9. 75.
    I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of AMS, vol.195, no. 912, AMS, Providence, RI, 2008.Google Scholar
  10. 76.
    I. Chueshov and I. Lasiecka, Attractors and long time behavior of von Karman thermoelastic plates, Appl. Math. Optim., 58 (2008), 195–241.MATHCrossRefMathSciNetGoogle Scholar
  11. 129.
    P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Ration. Mech. Anal., 25 (1967), 40–63.MATHCrossRefMathSciNetGoogle Scholar
  12. 132.
    S. Hansen and B. Zhang, Boundary control of thermoelastic beam, J. Math. Anal. Appl., 210 (1997), 182–205.MATHCrossRefMathSciNetGoogle Scholar
  13. 135.
    J.K. Hale, X.B. Lin and G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comp., 50 (1988) 89–123.MATHCrossRefMathSciNetGoogle Scholar
  14. 159.
    T. Kato, Perturbation Theory of Linear Operators, Springer, New York, 1966.Google Scholar
  15. 163.
    J.U. Kim, On the energy decay of linear thermoelastic plate, J. Math. Anal. Appl., 23 (1992), 889–899.MATHGoogle Scholar
  16. 172.
    O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.MATHCrossRefGoogle Scholar
  17. 173.
    J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989.MATHGoogle Scholar
  18. 174.
    J. Lagnese, The reachability problem for thermoelastic plate, Arch. Ration. Mech. Anal., 112 (1990), 223–267.MATHCrossRefMathSciNetGoogle Scholar
  19. 186.
    I. Lasiecka, Uniform decay rates for full von Karman system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation, Commun. Partial Diff. Eqs., 24 (1999), 1801–1849.MATHCrossRefMathSciNetGoogle Scholar
  20. 213.
    I. Lasiecka and R. Triggiani, Structural decomposition of thermoelsatic semigroups with rotational forces, Semigroup Forum, 60 (2000), 16–60.MATHCrossRefMathSciNetGoogle Scholar
  21. 216.
    I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Cambridge University Press, Cambridge, 2000.Google Scholar
  22. 224.
    Z. Liu and M. Renardy, A note on the equation of thermoelastic plate, Appl. Math. Lett., 8 (1995), 1–6.CrossRefMathSciNetGoogle Scholar
  23. 241.
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1986.Google Scholar
  24. 246.
    G. Raugel, Global Attractors in partial differential equations. In: Handbook of Dynamical Systems, vol. 2, B. Fiedler (Ed.), Elsevier, Amsterdam, 2002, 885–982.CrossRefGoogle Scholar
  25. 273.
    R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Department of Mechanics & MathematicsKharkov National UniversityKharkovUkraine
  2. 2.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations