Bursting Oscillations

Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 35)


Many neurons exhibit much more complicated firing patterns than simple repetitive firing. A common mode of firing in many neurons and other excitable cells is bursting oscillations. This is characterized by a silent phase of near-steady-state resting behavior alternating with an active phase of rapid, spikelike oscillations. Examples of bursting behavior are shown in Fig. 5.1. Note that bursting arises in neuronal structures throughout the central nervous system. Bursting activity in certain thalamic cells, for example, is implicated in the generation of sleep rhythms, whereas patients with parkinsonian tremor exhibit increased bursting activity in neurons within the basal ganglia. Cells involved in the generation of respiratory rhythms within the pre-Botzinger complex also display bursting oscillations.


Periodic Orbit Bifurcation Diagram Homoclinic Orbit Slow Variable Silent Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 7.
    S. M. Baer, T. Erneux, and J. Rinzel. The slow passage through a hopf bifurcation: Delay memory effects, and resonances. SIAM J. Appl. Math., 49:55–71, 1989.MathSciNetMATHCrossRefGoogle Scholar
  2. 15.
    R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman. Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol., 57:413–439, 1995.MATHGoogle Scholar
  3. 47.
    S. Coombes and P. C. Bressloff. Bursting: The Genesis of Rhythm in the Nervous System. World Scientific, Singapore, 2005.MATHCrossRefGoogle Scholar
  4. 56.
    A. Destexhe and P. Gaspard. Bursting oscillations from a homoclinic tangency in a time delay system. Phys. Lett. A, 173:386–391, 1993.CrossRefGoogle Scholar
  5. 71.
    G. B. Ermentrout and N. Kopell. Frequency plateaus in a chain of weakly coupled oscillators. I. SIAM J. Math. Anal., 15(2):215–237, 1984.MathSciNetMATHCrossRefGoogle Scholar
  6. 121.
    A. Hertz, A. Krogh, and R. Palmer. Introduction To The Theory of Neural Computation, Volume I. Perseus Books, New York, 1991.Google Scholar
  7. 130.
    X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing, S. J. Schiff, and J. Y. Wu. Spiral waves in disinhibited mammalian neocortex. J. Neurosci., 24:9897–9902, 2004.CrossRefGoogle Scholar
  8. 133.
    E. M. Izhikevich. Phase equations for relaxation oscillators. SIAM J. Appl. Math., 60(5):1789–1804 (electronic), 2000.MathSciNetMATHCrossRefGoogle Scholar
  9. 174.
    L. Lapicque. Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une plarization. J. Physiol. Gen., 9:620–635, 1907.Google Scholar
  10. 194.
    P. C. Matthews, R. E. Mirollo, and S. H. Strogatz. Dynamics of a large system of coupled nonlinear oscillators. Phys. D, 52(2-3):293–331, 1991.MathSciNetMATHCrossRefGoogle Scholar
  11. 222.
    W. Rall and J. Rinzel. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J., 13:648–688, 1973.CrossRefGoogle Scholar
  12. 223.
    L. Ren and G. B. Ermentrout. Monotonicity of phaselocked solutions in chains and arrays of nearest-neighbor coupled oscillators. SIAM J. Math. Anal., 29(1):208–234 (electronic), 1998.MathSciNetMATHCrossRefGoogle Scholar
  13. 239.
    M. E. Rush and J. Rinzel. The potassium A-current, low firing rates and rebound excitation in Hodgkin–Huxley models. Bull. Math. Biol., 57:899–929, 1995.MATHGoogle Scholar
  14. 255.
    S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison-Wesley, Readings, MA, 1984.Google Scholar
  15. 256.
    S. H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D, 143(1-4):1–20, 2000. Bifurcations, patterns and symmetry.MathSciNetMATHCrossRefGoogle Scholar
  16. 277.
    D. Ulrich. Dendritic resonance in rat neocortical pyramidal cells. J. Neurophysiol., 87:2753–2759, 2002.Google Scholar
  17. 223.
    L. Ren and G. B. Ermentrout. Monotonicity of phaselocked solutions in chains and arrays of nearest-neighbor coupled oscillators. SIAM J. Math. Anal., 29(1):208–234 (electronic), 1998.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dept. MathematicsUniversity of PittsburghPittsburghUSA
  2. 2.Dept. MathematicsOhio State UniversityColumbusUSA

Personalised recommendations